Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Adv Clin Chem ; 120: 169-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762241

RESUMO

Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.


Assuntos
Regulação da Expressão Gênica , Trypanosoma cruzi , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Humanos , Doença de Chagas , Sistemas CRISPR-Cas , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Trends Biotechnol ; 42(6): 665-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38129214

RESUMO

Mexico has the in-house technical and regulatory capacity to undertake human genome editing (HGE) governance. However, its regulatory framework must be reformed to be more targeted and govern the application of any emerging HGE technologies, leaving no room for unethical or unsafe practices for reproductive purposes.


Assuntos
Edição de Genes , Genoma Humano , Humanos , México , Edição de Genes/legislação & jurisprudência , Edição de Genes/ética , Edição de Genes/métodos , Genoma Humano/genética
4.
Planta ; 259(2): 32, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153530

RESUMO

MAIN CONCLUSION: CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/genética , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , RNA não Traduzido/genética , Genômica
5.
Mol Ther Methods Clin Dev ; 31: 101153, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38107675

RESUMO

Mucopolysaccharidosis (MPS) IVA is a lysosomal storage disorder caused by mutations in the GALNS gene that leads to the lysosomal accumulation of keratan sulfate (KS) and chondroitin 6-sulfate, causing skeletal dysplasia and cardiopulmonary complications. Current enzyme replacement therapy does not impact the bone manifestation of the disease, supporting that new therapeutic alternatives are required. We previously demonstrated the suitability of the CRISPR-nCas9 system to rescue the phenotype of human MPS IVA fibroblasts using iron oxide nanoparticles (IONPs) as non-viral vectors. Here, we have extended this strategy to an MPS IVA mouse model by inserting the human GALNS cDNA into the ROSA26 locus. The results showed increased GALNS activity, mono-KS reduction, partial recovery of the bone pathology, and non-IONPs-related toxicity or antibody-mediated immune response activation. This study provides, for the first time, in vivo evidence of the potential of a CRISPR-nCas9-based gene therapy strategy for treating MPS IVA using non-viral vectors as carriers.

7.
Adv Exp Med Biol ; 1429: 85-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486518

RESUMO

Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Edição de Genes , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Engenharia Celular
8.
Methods Mol Biol ; 2647: 121-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041332

RESUMO

The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.


Assuntos
Edição de Genes , Engenharia Genética , Animais , Humanos , Animais Geneticamente Modificados , Clonagem de Organismos , Clonagem Molecular
9.
Expert Opin Biol Ther ; 23(4): 353-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36920351

RESUMO

INTRODUCTION: Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED: Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION: Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Vetores Genéticos , Terapia Genética/métodos , Lisossomos
10.
Methods Mol Biol ; 2653: 333-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995636

RESUMO

Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene(s). In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein (RNP) complex assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.


Assuntos
Sistemas CRISPR-Cas , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Solanum tuberosum/genética , Melhoramento Vegetal , Edição de Genes/métodos , Genômica
11.
Plants (Basel) ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679018

RESUMO

Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.

12.
In. de Lima, Sarah Caroline Gomes; Fantacini, Daianne Maciely Carvalho; Furtado, Izadora Peter; Rossetti, Rafaela; Silveira, Roberta Maraninchi; Covas, Dimas Tadeu; de Souza, Lucas Eduardo Botelho. Genome editing for engineering the next generation of advanced immune cell therapies. , Springer, 2023. .
Monografia em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5101

RESUMO

Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.

13.
Front Plant Sci ; 14: 1331258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259920

RESUMO

Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.

14.
ACS Synth Biol ; 11(11): 3886-3891, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257021

RESUMO

Most CRISPR/Cas9 applications in yeast rely on a plasmid-based expression of Cas9 and its guide RNA (gRNA) containing a 20-nucleotides (nts) spacer tailored to each genomic target. The lengthy assembly of this customized gRNA requires at least 3-5 days for its precloning in Escherichia coli, purification, validation, and cotransformation with Cas9 into a yeast strain. Here, we constructed a series of 12 EasyGuide plasmids to simplify CRISPR/Cas9 applications in Saccharomyces cerevisiae. The new vectors provide templates for generating PCR fragments that can assemble up to six functional gRNAs directly into yeasts via homologous recombination between the 20-nts spacers. By dispensing precloning in E. coli, yeast in vivo gRNA assembly significantly reduces the CRISPR/Cas9 experimental workload. A highly efficient yeast genome editing procedure, involving PCR amplification of gRNAs and donors, followed by their transformation into a Cas9-expressing strain, can be easily accomplished through a quick protocol.


Assuntos
RNA Guia de Cinetoplastídeos , Saccharomyces cerevisiae , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes/métodos , Plasmídeos/genética
15.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142595

RESUMO

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Desoxirribonuclease I/metabolismo , Fibroblastos/metabolismo , Proteína Ativadora de G(M2) , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Edição de Genes , Globosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidase A/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipossomos/metabolismo , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Front Bioeng Biotechnol ; 10: 913728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837551

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.

17.
Front Plant Sci ; 13: 904829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693174

RESUMO

Different genome editing approaches have been used to engineer resistance against plant viruses. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas; CRISPR/Cas) systems to create pinpoint genetic mutations have emerged as a powerful tool for molecular engineering of plant immunity and increasing resistance against plant viruses. This review presents (i) recent advances in engineering resistance against plant viruses by CRISPR/Cas and (ii) an overview of the potential host factors as targets for the CRISPR/Cas system-mediated broad-range resistance and immunity. Applications, challenges, and perspectives in enabling the CRISPR/Cas system for crop protection are also outlined.

18.
Front Plant Sci ; 13: 868027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712599

RESUMO

The prokaryote-derived Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas mediated gene editing tools have revolutionized our ability to precisely manipulate specific genome sequences in plants and animals. The simplicity, precision, affordability, and robustness of this technology have allowed a myriad of genomes from a diverse group of plant species to be successfully edited. Even though CRISPR/Cas, base editing, and prime editing technologies have been rapidly adopted and implemented in plants, their editing efficiency rate and specificity varies greatly. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9-derived technologies and their implications on enhancing editing efficiency. We highlight the major efforts of engineering Cas9, Cas12a, Cas12b, and Cas12f proteins aiming to improve their efficiencies. We also provide a perspective on the global future of agriculturally based products using DNA-free CRISPR/Cas techniques. The improvement of CRISPR-based technologies efficiency will enable the implementation of genome editing tools in a variety of crop plants, as well as accelerate progress in basic research and molecular breeding.

19.
Methods Mol Biol ; 2495: 233-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696036

RESUMO

CRISPR/Cas9 system is a promising method for the generation of human disease models by genome editing in non-conventional experimental animals. Medium/large-sized animals like sheep have several advantages to study human diseases and medicine. Here, we present a protocol that describes the generation of an otoferlin edited sheep model via CRISPR-assisted single-stranded oligodinucleotide-mediated Homology-Directed Repair (HDR), through direct cytoplasmic microinjection in in vitro produced zygotes.Otoferlin is a protein expressed in the cochlear inner hair cells, with different mutations at the OTOF gene being the major cause of nonsyndromic recessive auditory neuropathy spectrum disorder in humans. By using this protocol, we reported for the first time an OTOF KI model in sheep with 17.8% edited lambs showing indel mutations, and 61.5% of them bearing knock-in mutations by HDR . The reported method establishes the bases to produce a deafness model to test novel therapies in human disorders related to OTOF mutations.


Assuntos
Sistemas CRISPR-Cas , Surdez , Animais , Surdez/genética , Edição de Genes/métodos , Humanos , Mutação , Reparo de DNA por Recombinação , Ovinos
20.
Mol Ther Methods Clin Dev ; 25: 392-409, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35573043

RESUMO

Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1. Compared with sub-lethal irradiation, Busulfan conditioning enhanced the engraftment of edited CD34+ cells in the bone marrow, as well the long-term homing and survival of bone-marrow-derived cells in viscera, and in the CNS, resulting in higher transgene expression and biochemical correction in these organs. Edited cell selection using a clinically compatible marker resulted in a population with low engraftment potential. We conclude that conditioning can impact the engraftment of edited hematopoietic stem cells. Furthermore, Busulfan-conditioned recipients have a higher expression of therapeutic proteins in target organs, particularly in the CNS, constituting a better conditioning approach for non-hematological diseases with neurological involvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA