Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 279, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061004

RESUMO

BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Klebsiella pneumoniae , Lipopolissacarídeos , Regiões Promotoras Genéticas , Proteínas Repressoras , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Lipopolissacarídeos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ferro/metabolismo , Sítios de Ligação , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo
2.
Antibiotics (Basel) ; 12(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37237748

RESUMO

Microbial infections resistant to conventional antibiotics constitute one of the most important causes of mortality in the world. In some bacterial species, such as Escherichia coli and Staphylococcus aureus pathogens, biofilm formation can favor their antimicrobial resistance. These biofilm-forming bacteria produce a compact and protective matrix, allowing their adherence and colonization to different surfaces, and contributing to resistance, recurrence, and chronicity of the infections. Therefore, different therapeutic alternatives have been investigated to interrupt both cellular communication routes and biofilm formation. Among these, essential oils (EO) from Lippia origanoides thymol-carvacrol II chemotype (LOTC II) plants have demonstrated biological activity against different biofilm-forming pathogenic bacteria. In this work, we determined the effect of LOTC II EO on the expression of genes associated with quorum sensing (QS) communication, biofilm formation, and virulence of E. coli ATCC 25922 and S. aureus ATCC 29213. This EO was found to have high efficacy against biofilm formation, decreasing-by negative regulation-the expression of genes involved in motility (fimH), adherence and cellular aggregation (csgD), and exopolysaccharide production (pgaC) in E. coli. In addition, this effect was also determined in S. aureus where the L. origanoides EO diminished the expression of genes involved in QS communication (agrA), production of exopolysaccharides by PIA/PNG (icaA), synthesis of alpha hemolysin (hla), transcriptional regulators of the production of extracellular toxins (RNA III), QS and biofilm formation transcriptional regulators (sarA) and global regulators of biofilm formation (rbf and aur). Positive regulation was observed on the expression of genes encoding inhibitors of biofilm formation (e.g., sdiA and ariR). These findings suggest that LOTCII EO can affect biological pathways associated with QS communication, biofilm formation, and virulence of E. coli and S. aureus at subinhibitory concentrations and could be a promising candidate as a natural antibacterial alternative to conventional antibiotics.

3.
Planta ; 252(4): 71, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001252

RESUMO

MAIN CONCLUSION: Characterization of anther and ovule developmental programs and expression analyses of stage-specific floral marker genes in Gossypium hirsutum allowed to build a comprehensive portrait of cotton flower development before fiber initiation. Gossypium hirsutum is the most important cotton species that is cultivated worldwide. Although cotton reproductive development is important for fiber production, since fiber is formed on the epidermis of mature ovules, cotton floral development remains poorly understood. Therefore, this work aims to characterize the cotton floral morphoanatomy by performing a detailed description of anther and ovule developmental programs and identifying stage-specific floral marker genes in G. hirsutum. Using light microscopy and scanning electron microscopy, we analyzed anther and ovule development during 11 stages of flower development. To better characterize the ovule development in cotton, we performed histochemical analyses to evaluate the accumulation of phenolic compounds, pectin, and sugar in ovule tissues. After identification of major hallmarks of floral development, three key stages were established in G. hirsutum floral development: in stage 1 (early-EF), sepal, petal, and stamen primordia were observed; in stage 2 (intermediate-IF), primordial ovules and anthers are present, and the differentiating archesporial cells were observed, marking the beginning of microsporogenesis; and in stage 6 (late-LF), flower buds presented initial anther tapetum degeneration and microspore were released from the tetrad, and nucellus and both inner and outer integuments are developing. We used transcriptome data of cotton EF, IF and LF stages to identify floral marker genes and evaluated their expression by real-time quantitative PCR (qPCR). Twelve marker genes were preferentially expressed in a stage-specific manner, including the putative homologs for AtLEAFY, AtAPETALA 3, AtAGAMOUS-LIKE 19 and AtMALE STERILITY 1, which are crucial for several aspects of reproductive development, such as flower organogenesis and anther and petal development. We also evaluated the expression profile of B-class MADS-box genes in G. hirsutum floral transcriptome (EF, IF, and LF). In addition, we performed a comparative analysis of developmental programs between Arabidopsis thaliana and G. hirsutum that considered major morphoanatomical and molecular processes of flower, anther, and ovule development. Our findings provide the first detailed analysis of cotton flower development.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Gossypium , Flores/anatomia & histologia , Flores/genética , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Óvulo Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA