RESUMO
The Galapagos sea lion ( Zalophus wollebaeki) is an otariid species endemic to the Galapagos archipelago and is currently listed as endangered. The ocular trematode Philophthalmus zalophi was recently reported to affect the survival of juvenile Galapagos sea lions on Santa Cruz Island, resulting in marked ophthalmic changes. This study evaluated the ophthalmic disease and histopathologic effects of P. zalophi on juvenile Galapagos sea lions in the largest rookery located on San Cristóbal Island. Twenty juvenile Galapagos sea lions (10 male and 10 female) were evaluated among five sites in the rookery El Malecón. Ophthalmic examination, including fluorescein staining and evaluation of the adnexa, cornea, and sclera, were performed on each eye. The presence, number, and location of ocular parasites were determined, and parasites were collected for identification. Conjunctival biopsy was performed on 11 animals: 2 that lacked parasites and gross lesions and 9 with both parasites and gross lesions. All parasites collected were confirmed as P. zalophi and identified in 80% (16/20) of the study animals and 70% (28/40) of the examined eyes. Philophthalmus zalophi was most frequently found attached to the nictitating membrane but also located on the palpebral conjunctiva or cornea. The most common clinical signs were varying degrees of conjunctival hyperemia (28/40 eyes), most frequently of the nictitating membrane and mucoid ocular discharge (12/40 eyes). The number of parasites was significantly associated with the degree of conjunctival hyperemia ( P < 0.001). Histopathology of conjunctival biopsies revealed organized lymphoid follicles and lymphoplasmacytic infiltrates. The histopathologic changes and gross lesions were likely due to the parasite's attachment to the conjunctiva. This study provides additional details of P. zalophi infection in juvenile Galapagos sea lions. Further research is warranted to detail the life cycle of this parasite, transmission to sea lions, and potential treatment protocols.
Assuntos
Oftalmopatias/veterinária , Leões-Marinhos/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Envelhecimento , Animais , Equador/epidemiologia , Oftalmopatias/epidemiologia , Oftalmopatias/parasitologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologiaRESUMO
The Galapagos sea lion ( Zalophus wollebaeki ), an endangered species, experiences high pup mortality (up to 100%) in years when El Niño events reduce food supply in the Galapagos Islands. Mortality of pups in non-El Niño years is estimated to be 5% in undisturbed colonies. From 2009 to 2012 we observed high pup mortality (up to 67%) in colonies close to the Galapagos capital, Puerto Baquerizo Moreno, where contact with humans, domestic animals, and rats is frequent. Gross postmortem findings from 54 pups included hemorrhagic lesions in liver and congestion in lungs; histopathology suggested a possible association with infectious diseases. Evidence of Leptospira infection was found in five out of seven samples collected in 2010. Canine distemper viral (CDV) RNA was detected in tissues from six sea lions (in 2011-12), four of which were confirmed by nucleotide sequencing. The absence of CDV antibodies in 109 juvenile animals tested in 2014 at urban and remote colonies could indicate that the CDV infection observed in 2011 was likely confined to a few animals. Our results indicated that Galapagos sea lions have been exposed at least to two pathogens, Leptospira and CDV; however, the impact of these infections on the sea lions is unclear.
Assuntos
Vírus da Cinomose Canina/isolamento & purificação , Leptospira/isolamento & purificação , Leões-Marinhos/virologia , Animais , Cerâmica , Equador , Espécies em Perigo de Extinção , Ilhas , Ratos , Leões-Marinhos/microbiologiaRESUMO
It is still debated whether main individual fitness differences in natural populations can be attributed to genome-wide effects or to particular loci of outstanding functional importance such as the major histocompatibility complex (MHC). In a long-term monitoring project on Galápagos sea lions (Zalophus wollebaeki), we collected comprehensive fitness and mating data for a total of 506 individuals. Controlling for genome-wide inbreeding, we find strong associations between the MHC locus and nearly all fitness traits. The effect was mainly attributable to MHC sequence divergence and could be decomposed into contributions of own and maternal genotypes. In consequence, the population seems to have evolved a pool of highly divergent alleles conveying near-optimal MHC divergence even by random mating. Our results demonstrate that a single locus can significantly contribute to fitness in the wild and provide conclusive evidence for the 'divergent allele advantage' hypothesis, a special form of balancing selection with interesting evolutionary implications.