Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 160(2): 234-255, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816431

RESUMO

The nervous system monitors the environment to maintain homeostasis, which can be affected by stressful conditions. Using mammalian models of chronic stress, we previously observed altered brain levels of GPM6A, a protein involved in neuronal morphology. However, GPM6A's role in systemic stress responses remains unresolved. The nematode Caenorhabditis elegans expresses a GPM6A ortholog, the neuronal membrane glycoprotein 1 (NMGP-1). Because of the shared features between nematode and mammalian nervous systems and the vast genetic tools available in C. elegans, we used the worm to elucidate the role of GPM6A in the stress response. We first identified nmgp-1 expression in different amphid and phasmid neurons. To understand the nmgp-1 role, we characterized the behavior of nmgp-1(RNAi) animals and two nmgp-1 mutant alleles. Compared to control animals, mutant and RNAi-treated worms exhibited increased recovery time from the stress-resistant dauer stage, altered SDS chemosensation and reduced egg-laying rate resulting in egg retention (bag-of-worms phenotype). Silencing of nmgp-1 expression induced morphological abnormalities in the ASJ sensory neurons, partly responsible for dauer exit. These results indicate that nmgp-1 is required for neuronal morphology and for behaviors associated with chemosensation. Finally, we propose nmgp-1 mutants as a tool to screen drugs for human nervous system pathologies.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Feminino
2.
Front Synaptic Neurosci ; 13: 661681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017241

RESUMO

The cellular and molecular mechanisms underlying neuropsychiatric and neurodevelopmental disorders show that most of them can be categorized as synaptopathies-or damage of synaptic function and plasticity. Synaptic formation and maintenance are orchestrated by protein complexes that are in turn regulated in space and time during neuronal development allowing synaptic plasticity. However, the exact mechanisms by which these processes are managed remain unknown. Large-scale genomic and proteomic projects led to the discovery of new molecules and their associated variants as disease risk factors. Neuronal glycoprotein M6a, encoded by the GPM6A gene is emerging as one of these molecules. M6a has been involved in neuron development and synapse formation and plasticity, and was also recently proposed as a gene-target in various neuropsychiatric disorders where it could also be used as a biomarker. In this review, we provide an overview of the structure and molecular mechanisms by which glycoprotein M6a participates in synapse formation and maintenance. We also review evidence collected from patients carrying mutations in the GPM6A gene; animal models, and in vitro studies that together emphasize the relevance of M6a, particularly in synapses and in neurological conditions.

3.
J Mol Neurosci ; 65(3): 301-311, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931501

RESUMO

Prenatal stress (PS) induces molecular changes that alter neural connectivity, increasing the risk for neuropsychiatric disorders. Here we analyzed -in the hippocampus of adult rats exposed to PS- the epigenetic signature mediating the PS-induced neuroplasticity changes. Furthermore, using cultured hippocampal neurons, we investigated the effects on neuroplasticity of an epigenetic modulator. PS induced significant modifications in the mRNA levels of stress-related transcription factor MEF2A, SUV39H1 histone methyltransferase, and TET1 hydroxylase, indicating that PS modifies gene expression through chromatin remodeling. In in vitro analysis, histone acetylation inhibition with apicidin increased filopodium density, suggesting that the external regulation of acetylation levels might modulate neuronal morphology. These results offer a way to enhance neural connectivity that could be considered to revert PS effects.


Assuntos
Epigênese Genética , Código das Histonas , Plasticidade Neuronal , Efeitos Tardios da Exposição Pré-Natal/genética , Estresse Psicológico/genética , Animais , Células Cultivadas , Dioxigenases/genética , Dioxigenases/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos Cíclicos/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA