RESUMO
The Magdalena River, the main river of Colombia, receives contaminated effluents from different anthropogenic activities along its path. However, the Magdalena River is used as drinking water source for approximately 30 million inhabitants, as well as a major source of fish for human consumption. Only a few studies have been conducted to evaluate the environmental and toxicological quality of the Magdalena River. To evaluate sediment toxicity, wild-type and GFP transgenic Caenorhabditis elegans were exposed to methanolic extracts, and effects on lethality, locomotion, growth, and gene expression were determined based on fluorescence spectroscopy. These biological and biochemical parameters were correlated with measured pollutant concentrations (PAHs and trace elements), identifying patterns of toxicity along the course of the river. Effects on lethality, growth, and locomotion were observed in areas influenced by industrial, gold mining, and petrochemical activities. Changes in gene expression were evident for cyp-34A9, especially in the sampling site located near an oil refinery, and at the seaport, in Barranquilla City. Body bend movements were moderately correlated with Cr and As concentrations. The expression of mtl-1, mtl-2, hsp-6, and hsp-70 were significantly associated with Pb/U, Pb, Sr, and As/Sr/Pb/U, respectively. Interestingly, toxicity of methanolic as well as aqueous extracts were more prone to be dependent on Cd, Zn, and Th. In general, ecological risk assessment showed sediments display low environmental impact in terms of evaluated metals and PAHs. Different types of waste disposal on the Magdalena River, as a result of mining, domestic, agricultural, and industrial activities, incorporate toxic pollutants in sediments, which are capable of generating a toxic response in C. elegans.
Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Monitoramento Ambiental , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Colômbia , Regulação da Expressão Gênica/efeitos dos fármacos , Medição de Risco , Poluentes Químicos da Água/análiseRESUMO
The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system.