Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 870: 147399, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37019319

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental and neurobehavioral disorder characterized by impaired social communication, repetitive and restricted patterns of behavior, activity, or interest, and altered emotional processing. Reported prevalence is 4 times higher in men and it has increased in recent years. Immunological, environmental, epigenetic, and genetic factors play a role in the pathophysiology of autism. Many neurochemical pathways and neuroanatomical events are effective in determining the disease. It is still unclear how the main symptoms of autism occur because of this complex and heterogeneous situation. In this study, we focused on gamma amino butyric acid (GABA) and serotonin, which are thought to contribute to the etiology of autism; it is aimed to elucidate the mechanism of the disease by investigating variant changes in the GABA receptor subunit genes GABRB3, GABRG3 and the HTR2A gene, which encodes one of the serotonin receptors. 200 patients with ASD between the ages of 3-9 and 100 healthy volunteers were included in the study. Genomic DNA isolation was performed from peripheral blood samples taken from volunteers. Genotyping was performed using the RFLP method with PCR specific for specific variants. Data were analyzed with SPSS v25.0 program. According to the data obtained in our study; In terms of HTR2A (rs6313 T102C) genotypes, the homozygous C genotype carrying frequency in the patient group and the homozygous T genotype carrying frequency in the GABRG3 (rs140679 C/T) genotypes were found to be significantly higher in the patient group compared to the control group (*p: 0.0001, p: 0.0001). It was determined that the frequency of individuals with homozygous genotype was significantly higher in the patient group compared to the control group and having homozygous genotypes increased the disease risk approximately 1.8 times. In terms of GABRB3 (rs2081648 T/C) genotypes, it was determined that there was no statistically significant difference in the frequency of carrying homozygous C genotype in the patient group compared to the control group (p: 0.36). According to the results of our study, we think that the HTR2A (rs6313 T102C) polymorphism is effective in modulating the empathic and autistic characteristics of individuals, and that the HTR2A (rs6313 T102C) polymorphism is more distributed in the post-synaptic membranes in individuals with a higher number of C alleles. We believe that this situation can be attributed to the spontaneous stimulatory distribution of the HTR2A gene in the postsynaptic membranes because of T102C transformation. In genetically based autism cases, carrying the point mutation in the rs6313 variant of the HTR2A gene and the C allele and the point mutation in the rs140679 variant of the GABRG3 gene and accordingly carrying the T allele provide a predisposition to the disease.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Receptor 5-HT2A de Serotonina , Receptores de GABA-A , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Frequência do Gene , Genótipo , Polimorfismo de Nucleotídeo Único , Receptor 5-HT2A de Serotonina/genética , Receptores de GABA-A/genética
2.
J Mol Neurosci ; 73(4-5): 237-249, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943547

RESUMO

Despite several efforts to identify the causes of autism spectrum disorders (ASD), its etiology remains still unclear. Among other aspects, genes that encode neurotransmitter receptors are strong candidates for autism. Here, we wanted to study some genetic variants of gamma-aminobutyric acid (GABA) receptor subunit genes GABRB3, GABRG3, and GABRA5, located on chromosome 15q11-q13 that might contribute to the etiology of ASD in the affected children of West Bengal. rs7180158, rs2081648 (GABRB3); rs12910555 (GABRG3); rs35399885, rs35832850 (GABRA5) were analyzed in 316 children with ASD and 227 healthy controls. Phenotypic associations were evaluated by Childhood Autism Rating Scale (CARS). Gene expression levels were measured by quantitative real-time PCR. ASD probands showed a higher frequency of "A" allele for rs7180158, "G" allele for rs12901555, and "T" allele for rs35399885. The GA + AA genotypes (rs7180158) and CT + TT genotypes (rs35399885) were found to confer significant risk towards ASD. rs2081648 was found to have transmission bias in the family. Additionally, these variants were found to be associated with one or more of ASD-associated phenotypic traits. Multifactor dimensionality reduction (MDR) analyses showed mostly independent contributory effects of some of the variants. Again, the gene expression levels of GABRB3, GABRG3, and GABRA5 were downregulated in the cases than the controls. ForGABRA5 rs35399885, the CC genotypes corresponded to higher expression levels compared to the other groups. This study reveals that genetic variants of GABAA receptor subunit genes are significantly associated with ASD. No data for the mentioned variants are found in the population of West Bengal, India.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Transtorno do Espectro Autista/genética , Receptores de GABA/genética , Receptores de GABA-A/genética , Transtorno Autístico/genética , Ácido gama-Aminobutírico , Polimorfismo de Nucleotídeo Único
3.
Mol Biol Rep ; 49(7): 6019-6028, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403940

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is an increasing concern among the Iraqi Arab population. The genetic alterations that cause ASD are likely to converge at the synapse. This study investigated polymorphisms in the GABAA receptor subunit (GABRG3) and the RELN gene as putative biomarkers of ASD in a pediatric population in Iraq. METHODS: The case control study included 60 patients with a clinical diagnosis of ASD (mild, moderate, or severe) according to DSM-IV criteria and matched healthy controls (n = 60). Blood samples were collected for DNA genotyping of SNPs rs736707 and rs208129 for RELN and GABRG3 using allele specific PCR. Assessment of genotype and allele distributions in patient groups used odd ratios (OR) with 95% confidence intervals and the Chi-square test. All statistical analysis was performed used SPSS software. RESULT: The patient cohort was highly consanguineous, with increased ratio (p > 0.05) of males to females (3:1) in both ASD (mean age, 6.66 ± 3.05) and controls (mean age, 5.76 ± 2.3). Both GABRG3 rs208129 genotypes TT (OR 4.33, p = 0.0015) and TA (OR 0.259, P = 0.008), and the T and A alleles were significantly associated with ASD. The RELN rs736707 TC genotype (OR 2.626, P = 0.034) was the only significant association with ASD. CONCLUSION: GABRG3 SNP rs208129 is a leading biomarker to predict genetic vulnerability to ASD in Iraqi Arabs. Expanded SNP panels and increased sample sizes are required for future GABRG3 studies, and to reach a consensus on RELN utility. Future ASD screening programs in Iraq should include genetic metrics in addition to clinical phenotype assessments.


Assuntos
Transtorno do Espectro Autista , Proteína Reelina/genética , Árabes/genética , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Iraque , Masculino , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Receptores de GABA-A/genética , Serina Endopeptidases/genética
4.
Ann Hum Genet ; 86(2): 71-79, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779508

RESUMO

Angelman syndrome (AS) (OMIM#105830) is an imprinting disorder caused due to alterations in the maternal chr 15q11-13 region. Majority of cases can be diagnosed by methylation-specific polymerase chain reaction (MS-PCR) of SNRPN gene and by UBE3A sequencing, however, about 10% of cases with AS phenotype remain undiagnosed. Differential diagnoses of AS can be detected by chromosomal microarray (CMA) and clinical exome sequencing (CES). In this study, 30 cases with AS features were evaluated by MS-PCR, CMA, and CES. SNRPN MS-PCR confirmed AS in eight (26%), CMA and CES diagnosed nine (30%) cases. One case was identified with a novel variant c.1125C > T in GABRG3, located at 15q12 region, which is currently not associated with any syndrome. The GABRG3 gene is also speculated to be imprinted, a MS-PCR assay was designed to confirm its differential parental methylation status. This assay identified another case with altered GABRG3 methylation. The two cases with GABRG3 alteration-sequence change and methylation indicate that GABRG3 may be associated with a subtype of AS or a new related syndrome. Performing GABRG3 MS-PCR and sequencing of a larger group of patients with AS phenotype and normal SNPRN and UBE3A status will help in establishing exact genotype-phenotype correlation.


Assuntos
Síndrome de Angelman , Receptores de GABA-A , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Metilação de DNA , Impressão Genômica , Humanos , Fenótipo , Receptores de GABA-A/genética , Proteínas Centrais de snRNP/genética
5.
BMC Med Genomics ; 14(1): 223, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530807

RESUMO

BACKGROUND: Gamma-aminobutyric acid type A (GABAA) receptors mainly mediate the effects of gamma-aminobutyric acid, which is the primary inhibitory neurotransmitter in the central nervous system. Abundant evidence suggests that GABAA receptors play a key role in sleep-regulating processes. No genetic association study has explored the relationships between GABAA receptor genes and sleep duration, sleep quality, and sleep timing in humans. METHODS: We determined the association between single-nucleotide polymorphisms (SNPs) in the GABAA receptor genes GABRA1, GABRA2, GABRB3, GABRA5, and GABRG3 and sleep duration, sleep quality, and sleep timing in the Taiwan Biobank with a sample of 10,127 Taiwanese subjects. There were 10,142 subjects in the original study cohort. We excluded 15 subjects with a medication history of sedative-hypnotics. RESULTS: Our data revealed an association of the GABRB3-GABRA5-GABRG3 gene cluster with sleep duration, which has not been previously identified: rs79333046 (beta = - 0.07; P = 1.21 × 10-3) in GABRB3, rs189790076 (beta = 0.92; P = 1.04 × 10-3) in GABRA5, and rs147619342 (beta = - 0.72; P = 3.97 × 10-3) in GABRG3. The association between rs189790076 in GABRA5 and sleep duration remained significant after Bonferroni correction. A variant (rs12438141) in GABRB3 was also found to act as a potential expression quantitative trait locus. Additionally, we discovered interactions between variants in the GABRB3-GABRA5-GABRG3 gene cluster and lifestyle factors, such as tea and coffee consumption, smoking, and physical activity, that influenced sleep duration, although some interactions became nonsignificant after Bonferroni correction. We also found interactions among GABRB3, GABRA5, and GABRG3 that affected sleep duration. Furthermore, we identified an association of rs7165524 (beta = - 0.06; P = 2.20 × 10-3) in GABRA5 with sleep quality and an association of rs79465949 (beta = - 0.12; P = 3.95 × 10-3) in GABRB3 with sleep timing, although these associations became nonsignificant after Bonferroni correction. However, we detected no evidence of an association of individual SNPs in GABRA1 and GABRA2. CONCLUSIONS: Our results indicate that rs189790076 in GABRA5 and gene-gene interactions among GABRB3, GABRA5, and GABRG3 may contribute to sleep duration in the Taiwanese population.


Assuntos
Receptores de GABA
6.
J Autism Dev Disord ; 51(11): 4043-4053, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33442857

RESUMO

In this pilot study, we aim to identify the role of few genetic variants of GABA-receptor type A subunits GABRB3 (rs4906902, rs7171660), GABRG3 (rs208129, rs140679), GABRA5 (rs 140681) in the aetiology of autism spectrum disorders in a population of West Bengal. 192 ASD probands, their parents and 184 ethnically-matched healthy controls were recruited for the study. The rs4906902G and the rs140679T conferred significant risk towards ASD. rs7171660 and rs140679 had transmission bias in the family. Neither alleles of rs 208129 and rs 140681 showed significant over-representation in either groups. All these variants were associated with at least one deficit in ASD-associated phenotypes like 'relating to people', 'Imitation', 'emotional response', 'body use', 'taste, smell, touch response' and 'activity levels'.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Humanos , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Receptores de GABA , Receptores de GABA-A/genética , Ácido gama-Aminobutírico
7.
Mol Autism ; 10: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312421

RESUMO

Background: Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods: To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results: Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions: Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.


Assuntos
Biomarcadores/metabolismo , Eletroencefalografia , Deficiência Intelectual/diagnóstico por imagem , Adulto , Criança , Aberrações Cromossômicas , Cromossomos Humanos Par 15 , Estudos de Coortes , Pai , Feminino , Humanos , Deficiência Intelectual/tratamento farmacológico , Masculino , Midazolam/administração & dosagem , Midazolam/uso terapêutico , Fenótipo , Receptores de GABA-A/metabolismo
8.
Biol Psychiatry ; 85(9): 752-759, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826071

RESUMO

BACKGROUND: Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by either disruptions of the gene UBE3A or deletion of chromosome 15 at 15q11-q13, which encompasses UBE3A and several other genes, including GABRB3, GABRA5, GABRG3, encoding gamma-aminobutyric acid type A receptor subunits (ß3, α5, γ3). Individuals with deletions are generally more impaired than those with other genotypes, but the underlying pathophysiology remains largely unknown. Here, we used electroencephalography (EEG) to test the hypothesis that genes other than UBE3A located on 15q11-q13 cause differences in pathophysiology between AS genotypes. METHODS: We compared spectral power of clinical EEG recordings from children (1-18 years of age) with a deletion genotype (n = 37) or a nondeletion genotype (n = 21) and typically developing children without Angelman syndrome (n = 48). RESULTS: We found elevated theta power (peak frequency: 5.3 Hz) and diminished beta power (peak frequency: 23 Hz) in the deletion genotype compared with the nondeletion genotype as well as excess broadband EEG power (1-32 Hz) peaking in the delta frequency range (peak frequency: 2.8 Hz), shared by both genotypes but stronger for the deletion genotype at younger ages. CONCLUSIONS: Our results provide strong evidence for the contribution of non-UBE3A neuronal pathophysiology in deletion AS and suggest that hemizygosity of the GABRB3-GABRA5-GABRG3 gene cluster causes abnormal theta and beta EEG oscillations that may underlie the more severe clinical phenotype. Our work improves the understanding of AS pathophysiology and has direct implications for the development of AS treatments and biomarkers.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/fisiopatologia , Ondas Encefálicas , Córtex Cerebral/fisiopatologia , Adolescente , Ritmo beta , Criança , Pré-Escolar , Ritmo Delta , Eletroencefalografia , Genótipo , Humanos , Lactente , Fenótipo , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA