Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. biol ; 84: e255692, 2024. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1374646

RESUMO

The current research was designed to reach extracellular protease production potential in different strains of Sordaria fimicola which were previously obtained from Dr. Lamb (Imperial College, London) from North Facing Slope and South Facing Slope of Evolution Canyon. After initial and secondary screening, two hyper-producers strains S2 and N6 were selected for submerged fermentation and cultural conditions including temperature, pH, incubation period, inoculum size, substrate concentration, and different carbon and nitrogen sources were optimized for enzyme production. S2 strain showed maximum protease production of 3.291 U/mL after 14 days of incubation at 30 °C with 7 pH, 1% substrate concentration and 1 mL inoculum, While N6 strain showed maximum protease production of 1.929 U/mL under fermentation optimized conditions. Another aim of the present research was to underpin the biodiversity of genetics and post-translational modifications (PTMs) of protease DPAP (peptidyl-aminopeptidase) in Sordaria fimicola. Five polymorphic sites were observed in amino acid sequence of S. fimicola strains with reference to Neurospora crassa. PTMs prediction from bioinformatics tools predicted 38 phosphorylation sites on serine residues for protease peptidyl-aminopeptidase in S1 strain of S. fimicola while 45 phosphorylation sites on serine in N7 strain and 47 serine phosphorylation modifications were predicted in N. crassa. Current research gave an insight that change in genetic makeup effected PTMs which ultimately affected the production of protease enzyme in different strains of same organism (S. fimicola). The production and molecular data of the research revealed that environmental stress has strong effects on the specific genes through mutations which may cause genetic diversity. S. fimicola is non- pathogenic fungus and has a short life cycle. This fungus can be chosen to produce protease enzyme on a commercial scale.


A pesquisa atual foi projetada para alcançar o potencial de produção de protease extracelular em diferentes cepas de Sordaria fimicola que foram previamente obtidas do Dr. Lamb (Imperial College, Londres) de North Facing Slope e South Facing Slope de Evolution Canyon. Após a triagem inicial e secundária, duas cepas hiperprodutoras S2 e N6 foram selecionadas para fermentação submersa e condições culturais, incluindo temperatura, pH, período de incubação, tamanho do inóculo, concentração de substrato, e diferentes fontes de carbono e nitrogênio foram otimizadas para produção de enzima. A cepa S2 apresentou produção máxima de protease de 3,291 U/mL após 14 dias de incubação a 30 °C com pH 7, concentração de substrato de 1% e inóculo de 1 mL, enquanto a cepa N6 apresentou produção máxima de protease de 1,929 U/mL em condições otimizadas de fermentação. Outro objetivo da presente pesquisa foi sustentar a biodiversidade da genética e modificações pós-tradicionais (PTMs) da protease DPAP (peptidil-aminopeptidase) em Sordaria fimicola. Cinco sítios polimórficos foram observados na sequência de aminoácidos de cepas de S. fimicola com referência a Neurospora crassa. A previsão de PTMs a partir de ferramentas de bioinformática previu 38 locais de fosforilação em resíduos de serina para protease peptidil-aminopeptidase na cepa S1 de S. fimicola, enquanto 45 locais de fosforilação em serina na cepa N7 e 47 modificações de fosforilação de serina foram previstas em N. crassa. A pesquisa atual deu uma ideia de que a mudança na composição genética afetou os PTMs que, em última análise, afetaram a produção da enzima protease em diferentes cepas do mesmo organismo (S. fimicola). A produção e os dados moleculares da pesquisa revelaram que o estresse ambiental tem fortes efeitos sobre genes específicos por meio de mutações que podem causar diversidade genética. S. fimicola é um fungo não patogênico e tem um ciclo de vida curto. Esse fungo pode ser escolhido para produzir enzima protease em escala comercial.


Assuntos
Peptídeo Hidrolases/genética , Sordariales , Enzimas/genética , Fungos
2.
Appl Biochem Biotechnol ; 187(4): 1158-1172, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30178205

RESUMO

The fungal genus Pyrenochaetopsis has received particular attention because of its different lifestyles, such as numerous plant pathogenic, saprophytic, and endophytic species. Its ability to infect plant cells relies heavily upon secreted peptidases. Here, we investigated the biochemical properties and catalytic specificity of a new serine peptidase secreted by the filamentous fungus Pyrenochaetopsis sp. We found that while this neutral serine peptidase displayed optimal activity at a pH of 7.0 and temperature of 45 °C, it tolerated a wide range of pH conditions and temperatures lower than 45 °C. Its peptidase activity was depressed by some metallic ions (such as aluminum, cobalt, and copper (II) chloride) and enhanced by others (such as sodium, lithium, magnesium, potassium, calcium, and manganese). Lastly, the enzyme showed the greatest specificity for non-polar amino acids, particularly leucine and isoleucine, and moderate specificity for basic and neutral polar amino acids. It displayed the least specificity for acidic residues.


Assuntos
Ascomicetos/enzimologia , Biocatálise , Serina Proteases/química , Serina Proteases/metabolismo , Inibidores Enzimáticos/farmacologia , Guanidina/farmacologia , Metais/farmacologia , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato , Tensoativos/farmacologia , Temperatura , Ureia/farmacologia
3.
Int J Biol Macromol ; 94(Pt A): 474-483, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771408

RESUMO

Peptidases are enzymes that catalyze the rupture of peptide bonds. Catalytic specificity studies of these enzymes have illuminated their modes of action and preferred hydrolysis targets. We describe the biochemical characteristics and catalytic specificity of a lysine-dependent peptidase secreted by the basidiomycete fungus Phanerochaete chrysosporium. We attained 5.7-fold purification of a ∼23-kDa neutral peptidase using size-exclusion (Sephadex G-50 resin) and ion-exchange (Source 15S resin) chromatography. Using the Fluorescence Resonance Energy Transfer substrate Abz-KLRSSKQ-EDDnp, we detected maximal activity at pH 7.0 and 45-55°C. The peptidase retained ∼80% of its enzymatic activity for a wide range of conditions (pH 4-9; temperatures up to 50°C for 1h). The peptidase activity was lowered by the ionic surfactants, sodium dodecyl sulfate and cetyltrimethylammonium bromide; the reducing agent, dithiothreitol; the chaotrope, guanidine; copper (II) ion; and the cysteine peptidase-specific inhibitors, iodoacetic acid and N-ethylmaleimide. The peptidase preferred the basic amino acids K and R and high selectivity on S'1 subsite, exhibiting a condition of lysine-dependence to catalysis on anchoring of this subsite.


Assuntos
Cisteína Proteases/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Biocatálise , Cisteína Proteases/isolamento & purificação , Inibidores de Cisteína Proteinase/química , Estabilidade Enzimática , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Lisina/química , Phanerochaete/enzimologia , Proteólise , Especificidade por Substrato
4.
Braz J Microbiol ; 46(2): 337-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26273247

RESUMO

Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.


Assuntos
Biotecnologia/métodos , Fungos/enzimologia , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo
5.
Braz. j. microbiol ; Braz. j. microbiol;46(2): 337-346, Apr-Jun/2015. tab
Artigo em Inglês | LILACS | ID: lil-749736

RESUMO

Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.


Assuntos
Biotecnologia/métodos , Fungos/enzimologia , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo
6.
Braz. J. Microbiol. ; 46(2): 337-346, Apr.-Jun. 2015. tab
Artigo em Inglês | VETINDEX | ID: vti-481408

RESUMO

Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.(AU)


Assuntos
Biotecnologia/métodos , Fungos/enzimologia , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA