Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 855: 158671, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099957

RESUMO

Forty-eight tropical shallow lakes (depth ≤ 4 m) across a climatic gradient were assessed for microplastic (MPs; <5 mm) pollution based on MPs concentrations in archive samples from lake shore sediments. The MPs were classified by type (fragments or fibres), colour (yellow, black, red, green, blue, white, and transparent), size (0.55 to 4.93 mm), and polymer (polyester, polyethylene, chlorinated polyethylene, and polyamide). Sediments were predominantly medium sand, and all samples (144) contained MPs, consisting of 24 % fragments (6.3 ± 11.3 MPs·300 g-1) and 76 % fibres (21.25 ± 12.7 MPs·300 g-1). The lake climate (humid, transitional, or semi-arid), type of surrounding land use (urban, semi-arid, or rural), and distance from the shoreline (0, 5 or 10 m) did not explain the differences in MPs concentrations, partially refuting the initial hypothesis. The only significant difference was between the sample medians for the number of fragments based on the region (H = 7.586; p = 0.0481). The number of fragments in the lakes in the humid region was greater than that in the semi-arid region (p < 0.05). Poor sanitation, sewage effluents, and solid wastes reaching and accumulating in the lakes may be the primary and transversal conditioning factors for this small difference among diverse environments. Freshwater lakes are investigated in all continents, and the present study contributes to the first record of MPs in shallow lake sediments in eastern South America. The 48 shallow lakes assessed showed a relatively low concentration of MPs compared to other lake contaminants reported in the international literature. This information coincides with public policies issued, regarding the control and reduction of plastics and MPs in Brazil, and the study region.


Assuntos
Microplásticos , Poluentes Químicos da Água , Lagos , Plásticos , Sedimentos Geológicos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Polietileno/análise , Brasil
2.
Electron. j. biotechnol ; 49: 34-41, Jan. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1291638

RESUMO

BACKGROUND: This work studied how the exposure to an unusual substrate forced a change in microbial populations during anaerobic fermentation of crude glycerol, a by-product of biodiesel production, with freshwater sediment used as an inoculum. RESULTS: The microbial associations almost completely (99.9%) utilized the glycerol contained in crude glycerol 6 g L 1 within four days, releasing gases, organic acids (acetic, butyric) and alcohols (ethanol, n-butanol) under anaerobic conditions. In comparison with control medium without glycerol, adding crude glycerol to the medium increased the amount of ethanol and n-butanol production and it was not significantly affected by incubation temperature (28 C or 37 C), nor incubation time (4 or 8 d), but it resulted in reduced amount of butyric acid. Higher volume of gas was produced at 37 C despite the fact that the overall bacterial count was smaller than the one measured at 20 C. Main microbial phyla of the inoculum were Actinobacteria, Proteobacteria and Firmicutes. During fermentation, significant changes were observed and Firmicutes, especially Clostridium spp., began to dominate, and the number of Actinobacteria and Gammaproteobacteria decreased accordingly. Concentration of Archaea decreased, especially in medium with crude glycerol. These changes were confirmed both by culturing and culture-independent (concentration of 16S rDNA) methods. CONCLUSIONS: Crude glycerol led to the adaptation of freshwater sediment microbial populations to this substrate. Changes of microbial community were a result of a community adaptation to a new source of carbon.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água Doce/microbiologia , Glicerol/metabolismo , Bactérias/metabolismo , Adaptação Biológica , Biocombustíveis , Fermentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Anaerobiose
3.
Extremophiles ; 20(3): 283-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26961777

RESUMO

The integron-gene cassette system has typically been associated with antibiotic-resistant pathogens. However, the diversity of gene cassettes and the abundance of class 1 integrons outside of the clinical context are not fully explored. Primers targeting the conserved segments of attC recombination sites were used to amplify gene cassettes from the sediment of the Mina stream, which exhibited a higher degree of stress to metal pollution in the dry season than the rainy season. Of the 143 total analyzed sequences, 101 had no matches to proteins in the database, where cassette open reading frames could be identified by homology with database entries. There was a predominance of sequences encoding essential cellular functions. Each season that was sampled yielded a specific pool of gene cassettes. Real-time PCR revealed that 8.5 and 41.6 % of bacterial cells potentially harbored a class 1 integron in the rainy and dry seasons, respectively. In summary, our findings demonstrate that most of the gene cassettes have no ascribable function and, apparently, historically metal-contaminated sediment favors the maintenance of bacteria containing the intI1 gene. Thus, the diversity of gene cassettes is far from being fully explored deserving further attention.


Assuntos
Poluição Ambiental , Genes Bacterianos , Variação Genética , Sedimentos Geológicos/microbiologia , Integrases/genética , Microbiota , Arsênio/análise , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sedimentos Geológicos/química , Ferro/análise , Proteobactérias/genética , Proteobactérias/isolamento & purificação
4.
Front Microbiol ; 5: 630, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505456

RESUMO

Among the neutrophilic iron-oxidizing bacteria (FeOB), Gallionella is one of the most abundant genera in freshwater environments. By applying qPCR and DGGE based on 16S rRNA gene-directed primers targeting Gallionellaceae, we delineated the composition and abundance of the Gallionellaceae-related FeOB community in streams differentially affected by metal mining, and explored the relationships between these community characteristics and environmental variables. The sampling design included streams historically impacted by mining activity and a non-impacted stream. The sediment and water samples harbored a distinct community represented by Gallionella, Sideroxydans, and Thiobacillus species. Sequences affiliated with Gallionella were exclusively observed in sediments impacted by mining activities, suggesting an adaptation of this genus to these environments. In contrast, Sideroxydans-related sequences were found in all sediments including the mining impacted locations. The highest and lowest relative frequencies of Gallionellaceae-related FeOB were associated with the lowest and highest concentrations of Fe, respectively. The data enclosed here clearly show distinct species-specific ecological niches, with Gallionella species dominating in sediments impacted by anthropogenic activities over Sideroxydans species.

5.
Front Microbiol ; 4: 101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641239

RESUMO

Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m(-) (2) d(-) (1)) and the lowest in the dam (51.60 ± 26.80 mg C m(-) (2) d(-) (1)). Moreover, mineralization rates were significantly related to bacterial abundance (r (2) = 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r (2) = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA