Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Manage ; 367: 121959, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074434

RESUMO

Changes to forests due to deforestation, or their replacement by agricultural areas, alter evapotranspiration and the partitioning of available energy. This study investigated seasonal variations in the energy balance and evapotranspiration in landscapes under different levels of anthropogenic intervention in the semi-arid region of Brazil. Micrometeorological data was obtained from September 2020 to October 2022 for three areas of the semi-arid region: preserved Caatinga (CAA, native vegetation), Caatinga under regeneration (REGE) and a deforested area (DEFA). Here, we use the Bowen ratio energy balance method. Measurements were taken of global solar radiation, air temperature, relative humidity, vapour pressure deficit, rainfall, net radiation, latent heat flux, sensible heat flux, soil heat flux, evapotranspiration, volumetric soil water content and Normalised Difference Vegetation Index. Sensible heat flux was the dominant flux in both areas with 66% for preserved Caatinga vegetation, 63% for Caatinga under regeneration and 62% deforested area. The latent heat flux was equivalent to 28% of the net radiation for preserved Caatinga vegetation, Caatinga under regeneration and deforested area. The evapotranspiration in turn responded as a function of water availability, being higher during the rainy seasons, with average values of 1.82 mm day-1 for preserved Caatinga vegetation, 2.26 mm day-1 for Caatinga under regeneration and 1.25 mm day-1 for deforested area. The Bowen ratio presented values > 1 in deforested area, preserved Caatinga vegetation and Caatinga under regeneration. Thus, it can be concluded that the change in land use alters the energy balance components, promoting reductions in available energy and latent and sensible heat fluxes during the rainy-dry transition in the deforested area. In addition, the seasonality of energy fluxes depends on water availability in the environment.


Assuntos
Estações do Ano , Brasil , Conservação dos Recursos Naturais , Florestas , Agricultura , Solo/química , Temperatura , Transpiração Vegetal
2.
Ageing Res Rev ; 99: 102396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942199

RESUMO

Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3ß (GSK-3ß), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3ß degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3ß, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.


Assuntos
Senescência Celular , Compostos de Lítio , Neurônios , Neurônios/efeitos dos fármacos , Compostos de Lítio/farmacologia , Fármacos Neuroprotetores/farmacologia , Enzimas/metabolismo , Inositol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , Humanos , Animais , Senescência Celular/efeitos dos fármacos
3.
Environ Monit Assess ; 195(3): 417, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807829

RESUMO

Anthropogenic activities are increasing the atmospheric carbon dioxide (CO2); around a third of the CO2 emitted by these activities has been taken up by the ocean. Nevertheless, this marine ecosystem service of regulation remains largely invisible to society, and not enough is known about regional differences and trends in sea-air CO2 fluxes (FCO2), especially in the Southern Hemisphere. The objectives of this work were as follows: first to put values of FCO2 integrated over the exclusive economic zones (EEZ) of five Latin-American countries (Argentina, Brazil, Mexico, Peru, and Venezuela) into perspective regarding total country-level greenhouse gases (GHG) emissions. Second, to assess the variability of two main biological factors affecting FCO2 at marine ecological time series (METS) in these areas. FCO2 over the EEZs were estimated using the NEMO model, and GHG emissions were taken from reports to the UN Framework Convention on Climate Change. For each METS, the variability in phytoplankton biomass (indexed by chlorophyll-a concentration, Chla) and abundance of different cell sizes (phy-size) were analyzed at two time periods (2000-2015 and 2007-2015). Estimates of FCO2 at the analyzed EEZs showed high variability among each other and non-negligible values in the context of greenhouse gas emissions. The trends observed at the METS indicated, in some cases, an increase in Chla (e.g., EPEA-Argentina) and a decrease in others (e.g., IMARPE-Peru). Evidence of increasing populations of small size-phytoplankton was observed (e.g., EPEA-Argentina, Ensenada-Mexico), which would affect the carbon export to the deep ocean. These results highlight the relevance of ocean health and its ecosystem service of regulation when discussing carbon net emissions and budgets.


Assuntos
Ecossistema , Gases de Efeito Estufa , Dióxido de Carbono/análise , América Latina , Mudança Climática , Monitoramento Ambiental/métodos , Gases de Efeito Estufa/análise , Metano/análise
4.
Sci Total Environ ; 870: 161921, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739023

RESUMO

Riparian buffer systems (RBS) are a common agroforestry practice that involves maintaining a forested boundary adjacent to water bodies to protect the aquatic ecosystems in agricultural landscapes. While RBS have potential for carbon sequestration, they also can be sources of methane emissions. Our study site at Washington Creek in Southern Ontario, includes a rehabilitated tree buffer (RH), a grassed buffer (GRB), an undisturbed deciduous forest (UNF), an undisturbed coniferous forest (CF), and an adjacent agricultural field (AGR). The objective of this study was to assess the diversity and activity of CH4 cycling microbial communities in soils sampled during hot moments of methane fluxes (July 04 and August 15). We used qPCR and high-throughput amplicon sequencing from both DNA and cDNA to target methanogen and methanotroph communities. Methanogens, including the archaeal genera Methanosaeta, Methanosarcina, Methanomassiliicoccus, and Methanoreggula, were abundant in all RBSs, but they were significantly more active in UNF soils, where CH4 emissions were highest. Methylocystis was the most prevalent taxon among methanotrophs in all the riparian sites, except for AGR soils where the methanotrophs community was composed primarily of members of rice paddy clusters (RPCs and RPC-1) and upland soil clusters (TUSC and USCα). The main factors influencing the composition and assembly of methane-cycling microbiomes were soil carbon and moisture content. We concluded that the differences in CH4 fluxes observed between RBSs were primarily caused by differences in the presence and activity of methanogens, which were influenced by total soil carbon and water content. Overall, this study emphasizes the importance of understanding the microbial drivers of CH4 fluxes in RBSs in order to maximize RBS environmental benefits.


Assuntos
Metano , Microbiota , Metano/análise , Archaea/genética , Solo/química , Carbono , Microbiologia do Solo
5.
J Radioanal Nucl Chem ; : 1-12, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36685005

RESUMO

New values of neutron fluxes and spectral parameters f and α were determined experimentally in all irradiation devices of the TRIGA Mark I IPR-R1 nuclear research reactor at Nuclear Technology Development Centre (CDTN), Belo Horizonte, Brazil. Sets of monitors Au, Fe, Zn and Zr were irradiated bare and Cd-covered, according to "Cd-ratio for multi-monitor" method. Values were validated by analysing the certified reference material BCR-320R irradiated in chosen channels. The calculations were made based on irradiation channel values and the average values of the Carousel. The results of E n -score point out that the k 0-method is producing reliable results. From now on, the values of mass fractions in several matrices, the production and studies with radioisotopes will be more accurate and the activities calculated more precisely.

6.
Environ Sci Pollut Res Int ; 30(13): 37174-37184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571691

RESUMO

Understanding the seasonal patterns and influencing factors of nitrogen atmospheric deposition is essential to evaluate human impacts on the air quality and nitrogen biogeochemical cycle. However, evaluation of the nitrogen deposition flux, especially in South America agricultural regions, has not been fully investigated. In this paper, we quantified the atmospheric wet deposition fluxes of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN), in a region with agricultural and livestock predominance in the Southern Minas Gerais region, Brazil, from May 2018 to April 2019. Deposition fluxes of nitrogen species in the wet season (October-March) were on average 4.8-fold higher than those in the dry season, which revealed significant seasonal variations driven largely by the seasonality of rainfall and agricultural operations. We also found high NO3-/NH4+ ratios (average = 8.25), with higher values in dry season (NO3-/NH4+ = 12.8) in comparison with wet season (NO3-/NH4+ = 4.48), which revealed a higher relative contribution of NOx emissions from traffic sources in dry season. We also estimated the influence of atmospheric deposition of inorganic nitrogen (N-DIN) on environmental ecosystems, being 2.01 kgNha-1 year-1 with potential risk of acidification and eutrophication of 30%. Therefore, attention should be paid to the role of wet atmospheric deposition of nitrogen as a source of nitrogen environmental pollution in agricultural regions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Nitrogênio , Humanos , Poluentes Atmosféricos/análise , Brasil , Ecossistema , Nitrogênio/análise , Estações do Ano
7.
Plant Physiol Biochem ; 193: 36-49, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323196

RESUMO

The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.


Assuntos
Arabidopsis , Tiorredoxinas , Tiorredoxinas/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Oxirredução , Arabidopsis/metabolismo , Tiorredoxina h , Carbono/metabolismo , Succinatos/metabolismo
8.
Sci Total Environ ; 848: 157485, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35870597

RESUMO

Freshwater ecosystems are important contributors to the global greenhouse gas budget and a comprehensive assessment of their role in the context of global warming is essential. Despite many reports on freshwater ecosystems, relatively little attention has been given so far to those located in the southern hemisphere and our current knowledge is particularly poor regarding the methane cycle in non-perennially glaciated lakes of the maritime Antarctica. We conducted a high-resolution study of the methane and carbon dioxide cycle in a lake of the Fildes Peninsula, King George Island (Lat. 62°S), and a succinct characterization of 10 additional lakes and ponds of the region. The study, done during the ice-free and the ice-seasons, included methane and carbon dioxide exchanges with the atmosphere (both from water and surrounding soils) and the dissolved concentration of these two gases throughout the water column. This characterization was complemented with an ex-situ analysis of the microbial activities involved in the methane cycle, including methanotrophic and methanogenic activities as well as the methane-related marker gene abundance, in water, sediments and surrounding soils. The results showed that, over an annual cycle, the freshwater ecosystems of the region are dominantly autotrophic and that, despite low but omnipresent atmospheric methane emissions, they act as greenhouse gas sinks.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Antárticas , Dióxido de Carbono/análise , Ecossistema , Gases/análise , Gases de Efeito Estufa/análise , Lagos/análise , Metano/análise , Solo , Água/análise
9.
Sci Total Environ ; 835: 155560, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489488

RESUMO

Monitoring solute fluxes in water quality studies is essential to reveal potential ecosystem disturbances, and is particularly important in Andean headwater catchments as they are the main sources of water for downstream populations. However, such studies have mainly focused on organic matter and nutrients, disregarding other solutes that can threaten water quality (e.g. arsenic, lead, calcium or magnesium). Additionally, routine low-resolution (weekly or monthly) sampling schemes may overlook important solute dynamics. Therefore, we collected water samples every four hours for the analysis of twenty-four solutes in a pristine tropical Andean páramo catchment. Solute fluxes were calculated using five different methods. The 4-hourly data set was filtered to test for an optimum sampling frequency without compromising export rates. Based on the available 4-hourly data, the results showed that the interpolation export method was best suited, due to a weak correlation with discharges. Of the twenty-four solutes analyzed, Dissolved Organic Carbon (DOC), Total Nitrogen bound (TNb), Si, Ca, Mg, K, and Na presented the highest input rates (with DOC = 4.167E+08 mEq km-2 yr-1 and Si = 1.729E+07 mEq km-2 yr-1) and export rates (with DOC = 2.686E+08 mEq km-2 yr-1 and Si = 2.953E+08 mEq km-2 yr-1). Moreover, DOC, TNb, NH4-N, NO2-N, NO3-N, PO4, Al, B, Cu, Fe, Zn, As, Cd, Cr, Pb, and V presented more input than export, while Ca, K, Mg, Na, Rb, Si, Sr, and Ba presented more export than input (geogenic sources). Filtered sampling frequencies demonstrated that a minimum of daily grab samples would be required to obtain reliable export rates with differences consistently below 10%, when compared to the 4-hourly solute export. These findings can be particularly useful for the implementation of long-term monitoring programs at low cost, and they provide high-quality information, for the first time, on biogeochemical budgets in a pristine páramo catchment.


Assuntos
Ecossistema , Monitoramento Ambiental , Carbono/análise , Nitrogênio/análise , Qualidade da Água
10.
Environ Monit Assess ; 193(9): 594, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426853

RESUMO

The worldwide evidence of human activities on the environment led the scientific community to recognize a new geologic time unit known as the "Anthropocene." Since the twentieth century, urbanization and industrialization needs driven by population and economic growth have impacted several ecosystems including the estuaries. To assess the contamination, provenance, and fluxes of trace elements (As, Cr, Cu, Ni, Pb, Sc, V, and Zn) over the last century, a geochemical and chemometric technique was employed in sediment cores of an industrial and port region of international importance, the Santos and São Vicente Estuarine System (SSVES). The results indicated low contamination, with the highest enrichment factors (EFs) for Cu (EF = 3.1), Pb (EF = 2.7), Zn (EF = 2.4), and As (EF = 2.3) found next to the harbor area. The Pre-industrial records confirm the relatively high concentrations of As and its naturally enriched occurrence on the Brazilian shelf. Sediment accumulation rates and trace element fluxes showed a general increase over the years, since the early 1960s, associated with the "Great Acceleration" of the mid-twentieth century. These alterations are human-induced and include urbanization and industrialization. Nonetheless, as the contents and enrichment of trace elements indicate that the region is not severely polluted, we hypothesize that the contamination in the SSVES is likely related to the drainage and erosion of the urbanized adjacent area, rather than direct disposal of inorganic contaminants from the industrial activity.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Oligoelementos/análise , Poluentes Químicos da Água/análise
11.
Environ Monit Assess ; 193(8): 480, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240260

RESUMO

The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.


Assuntos
Dípteros , Esterco , Animais , Bovinos , Monitoramento Ambiental , Larva , Metano , Suínos
12.
Front Microbiol ; 12: 635821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935996

RESUMO

Anthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropogenic stressor, i.e., human-induced nutrient loads. In this study, two mesocosm acidification experiments with Mediterranean waters from different seasons revealed distinct effects of OA on viruses and viral-mediated prokaryotic mortality depending on the trophic state and the successional stage of the plankton community. In the winter bloom situation, low fluorescence viruses, the most abundant virus-like particle (VLP) subpopulation comprising mostly bacteriophages, were negatively affected by lowered pH with nutrient addition, while the bacterial host abundance was stimulated. High fluorescence viruses, containing cyanophages, were stimulated by OA regardless of the nutrient conditions, while cyanobacteria of the genus Synechococcus were negatively affected by OA. Moreover, the abundance of very high fluorescence viruses infecting small haptophytes tended to be lower under acidification while their putative hosts' abundance was enhanced, suggesting a direct and negative effect of OA on viral-host interactions. In the oligotrophic summer situation, we found a stimulating effect of OA on total viral abundance and the viral populations, suggesting a cascading effect of the elevated pCO2 stimulating autotrophic and heterotrophic production. In winter, viral lysis accounted for 30 ± 16% of the loss of bacterial standing stock per day (VMMBSS) under increased pCO2 compared to 53 ± 35% in the control treatments, without effects of nutrient additions while in summer, OA had no significant effects on VMMBSS (35 ± 20% and 38 ± 5% per day in the OA and control treatments, respectively). We found that phage production and resulting organic carbon release rates significantly reduced under OA in the nutrient replete winter situation, but it was also observed that high nutrient loads lowered the negative effect of OA on viral lysis, suggesting an antagonistic interplay between these two major global ocean stressors in the Anthropocene. In summer, however, viral-mediated carbon release rates were lower and not affected by lowered pH. Eutrophication consistently stimulated viral production regardless of the season or initial conditions. Given the relevant role of viruses for marine carbon cycling and the biological carbon pump, these two anthropogenic stressors may modulate carbon fluxes through their effect on viruses at the base of the pelagic food web in a future global change scenario.

13.
Adv Exp Med Biol ; 1346: 155-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35113401

RESUMO

Plants, as biological systems, are organized and regulated by a complex network of interactions from the genetic to the morphological level and suffer substantial influence from the environment. Reductionist approaches have been widely used in plant biology but have failed to reveal the mechanisms by which plants can growth under adverse conditions. It seems likely, therefore, that to understand the complexity of plant metabolic responses it is necessary to adopt non-reductionist approaches such as those from systems biology. Although such approaches seem methodologically complex to perform and difficult to interpret, they have been successfully applied in both metabolic and gene expression networks in a wide range of microorganisms and more recently in plants. Given the advance of techniques that allow complex analysis of plant cells, high quantities of data are currently generated and are available for in silico analysis and mathematical modeling. It is increasingly recognized, therefore, that the use of different methods such as graph analysis and dynamic network modeling are needed to better understand this abundance of information. However, before these practical advances, one of the main challenges currently in plant biology is to change the paradigm from the classical reductionism to the systemic level, which requires not only scientific but also educational changes.


Assuntos
Plantas , Biologia de Sistemas , Redes Reguladoras de Genes , Modelos Biológicos , Modelos Teóricos , Plantas/genética
14.
Environ Monit Assess ; 192(8): 524, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676932

RESUMO

Arid and semi-arid environments correspond to one-third of the Earth's terrestrial surface. In these environments, precipitation is an essential and limiting element for vegetation growth and ecosystem biomass productivity. The semi-arid region of Brazil comprises around 11.5% of the national territory, where the Caatinga biome originally composed ~ 76% of this area, with water deficit as a prominent feature, annual rainfall lower than 800 mm, temperatures ranging between 25 and 30 °C, and potential evapotranspiration higher than 2000 mm/year. Research on the dynamics of mass and heat fluxes through techniques such as eddy covariance (EC) has contributed to estimate the magnitude and seasonal patterns of turbulent exchanges between ecosystems and the atmosphere. This study was conducted in an area of dense Caatinga (DC) and another of sparse Caatinga (SC) from 2013 to 2014. It was observed that albedo (α) and net radiation (Rn) were higher in the SC compared with DC since the magnitude of incoming shortwave radiation was higher in this area. It was found that most of the Rn is converted to sensible heat flux (H), mainly during the dry period in the SC, about 50% for H and 20% for λE. The energy balance closure showed that the turbulent fluxes (H + λE) were underestimated in comparison to the available energy at the surface (Rn - G). We also observed that this discrepancy was higher in the DC area, corresponding to ~ 30%.


Assuntos
Ecossistema , Monitoramento Ambiental , Brasil , Florestas , Estações do Ano
15.
Sci Total Environ ; 723: 138088, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392692

RESUMO

Monomethylmercury (MMHg) concentrations in aquatic biota from Lake Titicaca are elevated although the mercury (Hg) contamination level of the lake is low. The contribution of sediments to the lake MMHg pool remained however unclear. In this work, seven cores representative of the contrasted sediments and aquatic ecotopes of Lake Titicaca were sliced and analyzed for Hg and redox-sensitive elements (Mn, Fe, N and S) speciation in pore-water (PW) and sediment to document early diagenetic processes responsible for MMHg production and accumulation in PW during organic matter (OM) oxidation. The highest MMHg concentrations (up to 12.2 ng L-1 and 90% of THg) were found in subsurface PWs of the carbonate-rich sediments which cover 75% of the small basin and 20% of the large one. In other sediment facies, the larger content of OM restricted MMHg production and accumulation in PW by sequestering Hg in the solid phase and potentially also by decreasing its bioavailability in the PW. Diagenetically reduced S and Fe played a dual role either favoring or restricting the availability of Hg for biomethylation. The calculation of theoretical diffusive fluxes suggests that Lake Titicaca bottom sediments are a net source of MMHg, accounting for more than one third of the daily MMHg accumulated in the water column of the Lago Menor. We suggest that in the context of rising anthropogenic pressure, the enhancement of eutrophication in high altitude Altiplano lakes may increase these MMHg effluxes into the water column and favor its accumulation in water and biota.

16.
Glob Chang Biol ; 26(3): 1485-1498, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498520

RESUMO

Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above-ground biomass (EAGB) stocks, productivity, and mortality in old-growth tropical forests. These increases could reflect a shift in forest functioning due to global change and/or long-lasting recovery from past disturbance. We introduce a novel approach to disentangle the relative contributions of these mechanisms by decomposing changes in whole-plot biomass fluxes into contributions from changes in the distribution of gap-successional stages and changes in fluxes for a given stage. Using 30 years of forest dynamic data at Barro Colorado Island, Panama, we investigated temporal variation in EAGB fluxes as a function of initial EAGB (EAGBi ) in 10 × 10 m quadrats. Productivity and mortality fluxes both increased strongly with initial quadrat EAGB. The distribution of EAGB (and thus EAGBi ) across quadrats hardly varied over 30 years (and seven censuses). EAGB fluxes as a function of EAGBi varied largely and significantly among census intervals, with notably higher productivity in 1985-1990 associated with recovery from the 1982-1983 El Niño event. Variation in whole-plot fluxes among census intervals was explained overwhelmingly by variation in fluxes as a function of EAGBi , with essentially no contribution from changes in EAGBi distributions. The high observed temporal variation in productivity and mortality suggests that this forest is very sensitive to climate variability. There was no consistent long-term trend in productivity, mortality, or biomass in this forest over 30 years, although the temporal variability in productivity and mortality was so strong that it could well mask a substantial trend. Accurate prediction of future tropical forest carbon budgets will require accounting for disturbance-recovery dynamics and understanding temporal variability in productivity and mortality.


Assuntos
Árvores , Clima Tropical , Biomassa , Carbono , Colorado , Florestas , Panamá
17.
Artigo em Inglês | MEDLINE | ID: mdl-31812672

RESUMO

Insects are reported to have water midgut countercurrents fluxes powering enzyme recovery before excretion, usually known as enzyme recycling. Up to now there is a single, and very incomplete, attempt to relate transporters and channels with countercurrent fluxes. In this work, M. domestica midgut water fluxes were inferred from the concentration of ingested and non absorbable dye along the midgut, which anterior midgut was divided in two sections (A1, A2), the middle in one (M) and the posterior midgut in four (P1, P2, P3, and P4), which led to the finding of additional sites of secretion and absorption. Water is secreted in A1 and A2 and absorbed at the middle midgut (M), whereas in posterior midgut, water is absorbed at P2 and secreted in the other sections, mainly at P4. Thus, a countercurrent flux is formed from P4 to P2. To disclose the involvement of the known water transporters Na+:K+:2Cl- (NKCC) and K+:Cl- (KCC), as well as the water channels aquaporins in water fluxes, their expression was evaluated by RNA-seq analyses from triplicate samples of seven sections along the midgut. MdNKCC1 was expressed in A1, MdNKCC2 was expressed in M1 and P2 and MdKCC in middle and in the most posterior region, thus apparently involved in secretion, absorption and both, respectively. MdNKCC2, MdKCC and aquaporins MdDRIP1 and 2 were confirmed as being apical by proteomics of purified microvillar membranes. The role of NKCC and KCC on midgut water fluxes was tested observing the effect of the inhibitor furosemide. The change of trypsin distribution along the posterior midgut and the increase of trypsin excretion in the presence of furosemide lend support to the proposal that countercurrent fluxes power enzyme recycling and that the fluxes are caused by NKCC and KCC transporters helped by aquaporins.


Assuntos
Moscas Domésticas/metabolismo , Proteínas de Insetos/metabolismo , Animais , Transporte Biológico , Trato Gastrointestinal/metabolismo , Moscas Domésticas/enzimologia , Moscas Domésticas/genética , Moscas Domésticas/crescimento & desenvolvimento , Proteínas de Insetos/genética , Filogenia , Proteoma/metabolismo , RNA-Seq , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Membro 4 da Família 12 de Carreador de Soluto/genética , Membro 4 da Família 12 de Carreador de Soluto/metabolismo , Água/metabolismo
18.
Mar Pollut Bull ; 145: 396-406, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590802

RESUMO

We determined depth profiles of total mercury (T-Hg) in six 210Pb-dated sediment cores from Todos os Santos Bay to reconstruct the history of anthropogenic Hg accumulation. We also assessed superficial sediments samples from five estuaries. T-Hg concentrations (5-3500 µg kg-1) presented a large spatial and temporal variability. T-Hg concentrations in Ribeira Bay increased up to 200-fold along time, whereas the fluxes of T-Hg are substantially higher (up to 10,000 fold) than present-day wet deposition for industrialized areas. Sedimentary records indicate that a chlor-alkali plant has been the main source of Hg pollution until the present, although the T-Hg records suggest that harbor, shrimp farming, and oil refinery activities, besides Hg atmospheric depositions, are important across the bay. Sediments in the Ribeira Bay act as an important Hg sink. If sediments are eroded or disturbed, they may release Hg, thus posing a serious risk to wildlife and ecosystem health. CAPSULE: Sedimentary cores provide data on preindustrial levels and also anthropogenic fluxes of Hg for the appraisal of the magnitude, processes and potential risks of the contamination.


Assuntos
Sedimentos Geológicos , Atividades Humanas/história , Mercúrio/análise , Poluentes Químicos da Água/história , Baías , Brasil , Ecossistema , Monitoramento Ambiental , Poluição Ambiental/história , História do Século XX , História do Século XXI , Humanos , Poluentes Químicos da Água/análise
19.
Mar Pollut Bull ; 149: 110498, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31430665

RESUMO

Spatial and temporal variability of mercury concentrations in sediments was evaluated in 210Pb-dated sediment cores from offshore and intertidal areas in the southern Gulf of Mexico. In offshore cores, mercury concentrations were comparable (11.2-69.2 ng g-1), and intermediate between concentrations in intertidal cores from the eastern (6.0-34.4 ng g-1) and the western (34.9-137.7 ng g-1) inlets of Términos Lagoon. The enrichment factor (EF) indicated minimal contamination (EF < 2) in most offshore cores, whereas in some intertidal cores steadily increasing mercury enrichment and fluxes were observed along the past century. No evidence of oil industry related mercury contamination was found, as the minor but increasing enrichment in intertidal cores is most likely related to land-derived sources such as catchment eroded soils and waste water runoff. Results highlight the importance to control catchment erosion and untreated sewage releases to reduce mercury loadings to the coastal zone.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Mercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Golfo do México , Análise Espaço-Temporal
20.
Glob Chang Biol ; 25(6): 1967-1981, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30854765

RESUMO

Wetlands are important sources of methane (CH4 ) and sinks of carbon dioxide (CO2 ). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014-2017 using tower-based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4 , particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4 -C m-2  d-1 and absorbed 1.6 ± 0.2 g CO2 -C m-2  d-1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4 -C m-2  d-1 ) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m-2 (as CH4 -C + CO2 -C) in anaerobic phases and emitting 76 g C m-2 in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.


Assuntos
Dióxido de Carbono/química , Inundações , Florestas , Metano/química , Ciclo do Carbono , Ecossistema , Aquecimento Global , Estações do Ano , Solo , América do Sul , Clima Tropical , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA