Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628551

RESUMO

Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.


Assuntos
Parede Celular , Poaceae , Celulose/química , Ligantes , Simulação de Dinâmica Molecular , Poaceae/fisiologia
2.
New Phytol ; 230(2): 629-640, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124693

RESUMO

Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.


Assuntos
Expressão Ectópica do Gene , Triticum , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
3.
Comput Biol Chem ; 87: 107279, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32505880

RESUMO

Tissue softening accompanies the ripening of many fruits and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins that have been proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Several authors have shown that FaEXPA2 is a key gene that shows an increased expression level during ripening and softening of the strawberry fruit. For this reason, FaEXPA2 is frequently used as a molecular marker of softening in strawberry fruit, and changes in its relative expression have been related to changes in fruit firmness. In this context, we previously reported that FaEXPA2 has a high accumulation rate during fruit ripening in four different strawberry cultivars; however, the molecular mechanism of FaEXPA2 or expansins in general is not yet clear. Herein, a 3D model of the FaEXPA2 protein was built by comparative modeling to understand how FaEXPA2 interacts with different cell wall components at the molecular level. First, the structure was shown to display two domains characteristic of the other expansins that were previously described. The protein-ligand interaction was evaluated by molecular dynamic (MD) simulation using four different long ligands (a cellulose fiber, two of the more important xyloglucan (XG) fibers found in strawberry (XXXG and XXFG type), and a pectin (homogalacturonic acid type)). The results showed that FaEXPA2 formed a more stable complex with cellulose than other ligands via the different residues present in the open groove surface of its two domains, while FaEXPA2 did not interact with the pectin ligand.

4.
Comput Biol Chem ; 76: 79-86, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982166

RESUMO

Changes in the cellulose-hemicellulose fraction take place during ripening of strawberry fruit and are associated with the activity of a set of proteins and hydrolytic enzymes. Expansins are proteins located in the cell wall with no catalytic activity. In this context, FaEXPA1 was previously reported to have a high accumulation rate during fruit ripening in three different strawberry cultivars. In order to understand at the molecular level the expansin mechanism mode, a 3D model of FaEXPA1 protein was built by comparative modeling. FaEXPA1 protein model displayed two domains, a cellulose-binding domain with a ß-sandwich structure, and a second domain that included a HFD motif with a similar structure to the catalytic core of endoglucanase V from Humicola insolens. Additionally, in the center of the structure, an open groove was formed. Finally, using a cellulose polymer as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. Two MD simulations showed that FaEXPA1 can interact with cellulose via the flat aromatic surface of its binding domain D2, composed mainly of residues Trp99 and Trp225. In addition, FaEXPA1 formed a high number of hydrogen bonds with the glycan chain and the Asn81, Phe114 and Asn211 residues.


Assuntos
Celulose/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Celulose/química , Fragaria/química , Ligação de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA