Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 47(5): 507-515, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38326987

RESUMO

Tobacco stalk is a cellulose-rich material and a sustainable alternative to be applied as a plant-based nanofibrillated cellulose (NFC) source. NFC use has garnered attention in the development of oral pharmaceutical forms, despite concerns about its safety due to the adverse effects of nicotine on health. Therefore, we aimed at establishing the safety of NFC derived from tobacco stalk for its potential use as a novel pharmaceutical excipient, exploring its potential functions for tablet production. We conducted acute and subchronic oral toxicity tests in adult female Wistar rats. Initially, individual animals received sequential doses (175-5,000 mg·kg-1) for 24 hours followed by a careful observation of any toxic effects. Subsequently, 20 rats were divided into four groups for a subchronic assay, evaluating toxicity signs, body weight changes, hematological, biochemical, and histopathological parameters. No deaths or other clinical toxicity signs were observed in either the acute or the subchronic assays. We noticed a significant reduction in body weight gain (p < 0.05) after 14 days. We found statistical differences for hematological and biochemical parameters, unrelated to dosage. There were no observed toxic effects, and tobacco stalk ingestion did not adversely affect organ morphology in the histopathological evaluation. The oral administration of NFC at 5,000 mg·kg-1 per day for 28 days was well-tolerated by treated rats, with no reported deaths. In conclusion, NFC derived from tobacco stalk has shown to be a sustainable and safe alternative for use as an excipient at experimental doses, demonstrating compatibility with its proposed applications.


Assuntos
Celulose , Excipientes , Nicotiana , Ratos Wistar , Animais , Feminino , Celulose/toxicidade , Celulose/administração & dosagem , Celulose/química , Excipientes/toxicidade , Excipientes/química , Administração Oral , Testes de Toxicidade Subcrônica , Ratos , Testes de Toxicidade Aguda , Nanofibras/toxicidade , Química Verde , Relação Dose-Resposta a Droga
2.
Daru ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903944

RESUMO

OBJECTIVES: Veterinarians and pharmacists are familiar with the efficacy and safety aspects attributed to active pharmaceutical ingredients included in medicines, but they are rarely concerned with the safety of excipients present in medicines. Although generally recognized as safe, excipients are not chemically inert and may produce adverse events in certain animal populations. This review aims to present excipients of concern to these populations and highlight their relevance for rational veterinary pharmacotherapy. EVIDENCE ACQUISITION: A comprehensive review of the literature about the existence of adverse reactions in animals caused by pharmaceutical excipients was carried out based on an exploratory study. An overview of the correct conditions of use and safety of these excipients has also been provided, with information about their function, the proportion in which they are included in the different pharmaceutical dosage forms and the usual routes of administration. RESULTS: We identified 18 excipients considered of concern due to their potential to cause harm to the health of specific animal populations: bentonite, benzalkonium chloride, benzoic acid, benzyl alcohol, ethanol, lactose, mannitol, mineral oil, monosodium glutamate, polyethylene glycol, polysorbate, propylene glycol, sodium benzoate, sodium carboxymethylcellulose, sodium lauryl sulfate, sulfites, polyoxyethylene castor oil derivatives, and xylitol. Among the 135 manuscripts listed, only 24 referred to studies in which the substances were correctly evaluated as excipients. CONCLUSIONS: Based on the information presented in this review, the authors hope to draw the attention of professionals involved in veterinary pharmacotherapy to the existence of excipients of concern in medicines. This information contributes to rational veterinary pharmacotherapy and supports veterinary pharmacovigilance actions. We hope to shed light on the subject and encourage studies and new manuscripts that address the safety of pharmaceutical excipients to the animal population.

3.
Braz. J. Pharm. Sci. (Online) ; 59: e22505, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439507

RESUMO

Abstract Natural products are considered an important source of the therapeutic arsenal currently available. Among these alternatives are the seeds of Ambrosia peruviana (altamisa), whose extract has shown an anti-inflammatory effect. The main objective of this work was to perform a preformulation study of Ambrosia peruviana seeds ethanolic extract, where the main factors that affect the physical, chemical, and pharmacological stability of the extract were evaluated, as well as a compatibility study by differential scanning calorimetry (DSC) analysis against different excipients. A dry extract was obtained by rotary evaporation of the seeds macerated with 96% ethanol. The anti-inflammatory activity was determined by measuring its effect on NO production in RAW 264.7 macrophages, stimulated with LPS. The results showed that the dry extract maintained its stability over time when stored at a temperature of 4 and 25ºC, demonstrating its biological activity, the content of phenolic compounds, and its physicochemical parameters remain practically invariable. However, when exposed to high temperatures (60 ºC) it was affected. The thermal analysis revelated that the behavior of most of the selected excipients and the dry extract was maintained, which indicates that it did not present incompatibilities, therefore they can be candidates for formulating a microemulsion.


Assuntos
Sementes/metabolismo , Asteraceae/classificação , Ambrosia/efeitos adversos , Produtos Biológicos , Varredura Diferencial de Calorimetria/métodos , Excipientes/administração & dosagem
4.
Drug Deliv Transl Res ; 12(3): 526-537, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33682031

RESUMO

Transdermal administration of raloxifene hydrochloride (RLX)-loaded nanostructured lipid carriers (NLCs) has been proposed to circumvent its low oral bioavailability (2%). Preformulation studies were carried out to evaluate drug-excipient compatibility of various adjuvants commonly used for NLC preparation (waxes, cholesterol, compritol, gelucire, span 60, span 80, span 85, tween 80, poloxamer 188, oleic acid, caprylic/capric triglyceride, and castor oil). It was used differential scanning calorimetry (DSC), isothermal stress testing (IST), and solubility studies. The most promising excipients were chosen for NLC obtention, and full characterization was done, including in vitro skin permeation. DSC curves suggested drug-excipient interaction among some compounds, and the IST study showed incompatibility of RLX with waxes, compritol, cholesterol, span 60, and poloxamer 188. Solubility studies helped select gelucire, caprylic/capric triglyceride, span 80, and tween 80 for NLC production. Twelve NLCs were obtained (NLC1 to NLC12), but NLC7 and NLC8 were the most promising ones. In vitro release studies demonstrated that NLC7 and NLC8 were able to control RLX release (14.74 and 9.07% at 24 h, respectively) compared with the unloaded drug (> 90% at 24 h). Unloaded RLX did not permeate the diffusion cells' receptor medium and showed higher drug skin retention (11-fold) than RLX-loaded NLC. NLC reduced RLX skin retention, favoring drug permeation to deeper skin layers. NLC7 increased drug flux is 2.4-fold. NLC7 is a promising formulation for RLX transdermal drug delivery.


Assuntos
Nanopartículas , Nanoestruturas , Administração Cutânea , Portadores de Fármacos/química , Excipientes/química , Lipossomos , Nanopartículas/química , Tamanho da Partícula , Poloxâmero , Polissorbatos , Cloridrato de Raloxifeno , Triglicerídeos , Ceras
5.
Braz. J. Pharm. Sci. (Online) ; 58: e191088, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1394055

RESUMO

Abstract The objective of this study was to determine the influence of nonionic surfactants on the effectiveness of preservatives used in emulsions containing high surfactant content. Mixtures of different concentrations were prepared between polyethoxylated (40) hydrogenated castor oil (PHCO) and polyoxyethylene sorbitan monooleate (PSO), with methylparaben, phenoxyethanol, methylparaben, ethylparaben, propylparaben, and isobutylparaben (PMEPBI) blend, phenoxyethanol and benzoic acid (BP) blend, and phenoxyethanol and caprylyl glycol (PC) blend. Subsequently, the compatibility of the formulation ingredients and the effectiveness of the preservatives were evaluated by the challenge test. It was found that PHCO and PSO inactivated the antimicrobial action of methylparaben and PMEPBI. Paraben-free preservatives BP and PC had less influence on surfactants than systems containing parabens. When incorporated into microemulsions and nanoemulsions containing 40% and 20% surfactants, methylparaben and BP 0.2% and 0.5% were only effective against Aspergillus niger. The PMEPBI 0.2% was effective as a preservative in nanoemulsified formulations against A. niger, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The results demonstrate that the efficacy of the preservative system in formulations containing nonionic surfactant excipients depends on the type of excipient, the components of the formulation, the preservative systems composition, the excipient to preservative ratio, and the availability in the formulation.


Assuntos
Polissorbatos/farmacologia , Tensoativos/farmacologia , Óleo de Rícino/farmacologia , Aditivos em Cosméticos , Excipientes/farmacologia , Efetividade , Contagem de Colônia Microbiana , Testes de Sensibilidade Microbiana , Estabilidade de Cosméticos
6.
AAPS PharmSciTech ; 22(8): 263, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729662

RESUMO

Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.


Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Impressão Tridimensional , Solubilidade
7.
Mar Drugs ; 19(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204083

RESUMO

We investigated a spray drying process for preparing water-soluble salts of high molecular weight chitosan (CH) intended for pharmaceutical excipient applications. CH was derived from chitin of marine lobster origin (Panulirus argus). The effects of organic acid (acetic or lactic acid) and the ratio (difference) of inlet/outlet air temperature (140/90 °C or 160/100 °C) on spray drying were studied. The yield of spray-dried CH salt powders ranged from 50% to 99% in laboratory and industrial-scale processes. The spray-dried dry powder of CH salts consisted of spherical agglomerated particles with an average diameter of 36.2 ± 7.0 µm (CH acetate) and 108.6 ± 11.5 µm (CH lactate). After dispersing the spray-dried CH salt powder samples in purified water, the mean particle sizes obtained for the CH acetate salts were 31.4 nm (batch A001), 33.0 nm (A002) and 44.2 nm (A003), and for the CH lactate salts 100.8 nm (batch L001), 103.2 nm (L002) and 121.8 nm (L003). The optimum process conditions for spray drying were found: an inlet air temperature of 160 ± 5 °C, an outlet temperature of 100 ± 5 °C and an atomizer disk rotational speed of 18,200 min-1. The X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) results confirmed the amorphous state of the CH salts. The 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra of CH acetate and lactate salts verified that the spray drying process does not affect the polymer backbone. In conclusion, both laboratory and industrial-scale spray drying methods for preparing water-soluble acid salts of CH are reproducible, and the physicochemical properties of the corresponding CH acid salts are uniform.


Assuntos
Quitosana/síntese química , Excipientes/síntese química , Sais/síntese química , Secagem por Atomização , Animais , Varredura Diferencial de Calorimetria , Química Farmacêutica , Quitosana/química , Excipientes/química , Espectroscopia de Ressonância Magnética , Palinuridae/química , Tamanho da Partícula , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
8.
Drug Dev Ind Pharm ; 47(5): 825-837, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34033502

RESUMO

OBJECTIVE: The objective of this work was to prepare mucoadhesive buccal tablets containing nystatin and purified cashew gum for the treatment of oral candidiasis. SIGNIFICANCE: Mucoadhesive buccal tablets containing the drug nystatin are an alternative to oral suspensions, which cause low therapeutic adherence to the treatment of oral candidiasis. Purified cashew gum has been studied as a diluent and mucoadhesive agent in tablets. METHODS: Two batches of mucoadhesive tablets were produced, MT1 and MT 2, containing purified cashew gum, nystatin (500,000 IU), flavoring agent and with or without the presence of lubricant agent. The average weight, mechanical properties, dose uniformity, drug release profile, mucoadhesive properties and antimicrobial activity against Candida albicans were evaluated. RESULTS: Tablets presented average weight of 329.1 ± 3.1 mg (MT1) and 334.6 ± 1.5 mg (MT2), hardness of 9.8 ± 0.8 KgF (MT1) and 8.3 ± 0.4 KgF (MT2), friability of 0.2% (MT1 and MT2), and dose uniformity of 102.20 ± 1.17% (MT1) and 99.06 ± 7.40% (MT2). MT1 and MT2 were able to swell, erode, release the drug and remain adhered to the pig's cheek up to 3 h for batch MT1 and 4 h for batch MT2, and the amount of nystatin released since the beginning of the test in both batches was sufficient to inhibit the growth of the fungus. CONCLUSIONS: Therefore, the proposed formulation proved to be very promising and met all the studied criteria, showing to be ideal for the treatment of oral candidiasis.


Assuntos
Anacardium , Candidíase Bucal , Candidíase Bucal/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Mucosa Bucal , Nistatina/uso terapêutico , Solubilidade , Comprimidos/uso terapêutico
9.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917445

RESUMO

The purpose of the study was to develop a novel, directly compressible, co-processed excipient capable of providing a controlled-release drug system for the pharmaceutical industry. A co-processed powder was formed by adsorption of solid lipid nanoparticles (SLN) as a controlled-release film onto a functional excipient, in this case, dicalcium phosphate dihydrate (DPD), for direct compression (Di-Tab®). The co-processed excipient has advantages: easy to implement; solvent-free; industrial scaling-up; good rheological and compressibility properties; and the capability to form an inert platform. Six different batches of Di-Tab®:SLN weight ratios were prepared (4:0.6, 3:0.6, 2:0.6, 1:0.6, 0.5:0.6, and 0.25:0.6). BCS class III ranitidine hydrochloride was selected as a drug model to evaluate the mixture's controlled-release capabilities. The co-processed excipients were characterized in terms of powder rheology and dissolution rate. The best Di-Tab®:SLN ratio proved to be 2:0.6, as it showed high functionality with good flow and compressibility properties (Carr Index = 16 ± 1, Hausner Index = 1.19 ± 0.04). This ratio could control release for up to 8 h, so it fits the ideal profile calculated based on biopharmaceutical data. The compressed systems obtained using this powder mixture behave as a matrix platform in which Fickian diffusion governs the release. The Higuchi model can explain their behavior.


Assuntos
Preparações de Ação Retardada/farmacologia , Excipientes/química , Lipídeos/química , Nanopartículas/química , Força Compressiva , Liberação Controlada de Fármacos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Ranitidina/farmacologia , Reologia
10.
J Pharm Biomed Anal ; 194: 113776, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33272786

RESUMO

Growth Hormone Releasing Peptide-6 (GHRP-6) is a promising molecule (H-His1-d-Trp- Ala-Trp-d-Phe-Lys6-NH2) for the treatment of several diseases. Studies on the degradation pathways of this molecule under stressed conditions are needed to develop appropriate formulations. Degradation products (DPs) of GHRP-6, generated by heating in the dark at 60 °C with pH ranging from 3.0 to 8.0 and in presence of common buffers, were isolated by RP-HPLC and characterized by ESI-MS/MS. C-terminal deamidation of GHRP-6 was generated preferentially at pH 3.0 and 8.0. Hydrolysis and head-to-tail cyclization were favored at pH ranging from 6.0 to 7.0 in phosphate containing buffers. A DP with +12 Da molecular mass was presumably originated by the reaction with formaldehyde derived from some of the additives and/or elastomeric closures. Certain DPs derived from the acylation reaction of the tri- and di-carboxylic buffering species were favored at pH 3.0-6.0 and indicate that buffer components, including those "Generally Recognized as Safe", may potentially introduce chemical modifications and product heterogeneity. Nano LC-MS/MS analysis revealed GHRP-6 was also detected as a low-abundance species with Trp oxidized to 5-hydroxy, kynurenine, and N-formylkynurenine. The kinetics for the formation of the major degradation products was also studied by RP-HPLC.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Espectrometria de Massas em Tandem , Concentração de Íons de Hidrogênio , Cinética , Oligopeptídeos
11.
Nanomaterials (Basel) ; 10(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438544

RESUMO

Excipients represent the complement of the active principle in any pharmaceutical form. Their function is to provide stability, protection, and to ensure absorption of the drug and acceptability in patients. Cellulose is a conventional excipient in many pharmaceutical solid dosage products. Most of the sources used to extract microcrystalline cellulose come from cotton or wood, which are expensive and in high demand from other industries. As plants are considered the main source of excipient production, we have taken advantage of the biodiversity of Ecuador to evaluate microcrystalline cellulose extracted from borojó (Alibertia patinoi), a native plant, as an excipient for solid dosage formulations. The method of choice for tablet manufacturing was direct compression since it is a conventional fabrication method in the pharmaceutical industry. First, we performed scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) in order to compare the structure and characteristics of the extracted cellulose with two reference commercial cellulose materials. Second, we performed quality tests to evaluate the use of the isolate as an excipient including fluidity, hardness, friability, and disintegration. Compared with commercial and microcrystalline cellulose, the extracted cellulose from the native plant showed comparable characteristics and is consequently a potential excipient that could be used in the pharmaceutical industry. Last, we performed a dissolution test in which we concluded that all tablets have a short release time of active principle.

12.
J Biomed Mater Res B Appl Biomater ; 108(5): 2227-2237, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31970926

RESUMO

The use of chitosan as a pharmaceutical excipient in the ocular field is already established. Nevertheless, some aspects related to its ocular administration, such as sterilization and excipient's pharmacokinetics, remain unclear. So, in this study, we evaluated those two relevant aspects, related to chitosan administration in eye. We used chitosan-based ocular inserts (CI) as formulation model. CI were produced by solvent/casting method and sterilized by saturated steam. Sterilization was confirmed by direct inoculation of inserts in suitable microbiological growth media. Physicochemical characterization of inserts before and after sterilization was performed. Results suggested that, although steam sterilization changed the arrangement of the matrix, the heat and the humidity did not modify the structure of the main polymeric chain. Pharmacokinetics of CI radiolabeled with technetium-99m (99m Tc) was assessed by scintigraphic images and ex vivo biodistribution study, after ocular administration in male Wistar rats. Scintigraphic and images analysis and ex vivo biodistribution study showed that the insert remained mainly in the eye until 6 hr after administration and its degradation products began to migrate to the abdominal cavity after 18 hr. Together, these data represent an important step forward the manufacturing and the clinical application of CI in the ophthalmic field.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Excipientes/química , Administração Oftálmica , Animais , Quitosana/administração & dosagem , Quitosana/farmacocinética , Humanos , Masculino , Ratos , Esterilização , Relação Estrutura-Atividade , Distribuição Tecidual
13.
J Drug Target ; 28(4): 339-355, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31575296

RESUMO

Protein drugs present specific challenges to the maintenance of long-term stability, which can be accomplished by altering parameters of obtention, purification, molecule structure and formulation. As we believe, commercial formulations are undervalued; therefore, this review focuses on screening, categorising and discussing all formulations of protein drugs approved and not withdrawn by regulatory agencies from United States, Canada and Europe until mid-2018. Peptides (<50 amino acids) were not included to allow a more precise evaluation of choices for larger molecules. We extracted data from the DrugBank database, cross-checked it with the FDA purple book and supplemented it with patient information leaflets and papers. We further classified and discussed the entries according to protein function, drug delivery, route of administration and types of excipient (freeze-dried forms). In addition, alternative choices of excipients were discussed. Experimental work included here relates to targeting strategies with verified pharmacokinetics or in vivo effectiveness to identify physiologically relevant options. Although no single rule can be set for efficient protein formulation, our data help to better understand and optimise the choice for excipients and pharmaceutical dosage forms. For more information, see the Supplemental Data.


Assuntos
Preparações Farmacêuticas/química , Proteínas/química , Animais , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Excipientes/química , Humanos
14.
Saudi Pharm J ; 27(8): 1138-1145, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31885473

RESUMO

Rosmarinic acid (RA) is a phenolic compound that presents well-documented anti-inflammatory, antioxidant and antitumor activities, and based on its pharmacological potential and poor bioavailability, several solid dosage forms have been developed to RA delivery. Therefore, in literature, there are no reports about RA compatibility with excipients. In this regard, the aim of the present study was to evaluate, for the first time, the compatibility of RA with excipients commonly used in solid dosage forms at a 1:1 (RA:excipient) ratio using differential scanning calorimetry (DSC), thermogravimetry (TG), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (ssNMR), and isothermal stress testing (IST) coupled with liquid chromatography (LC). The excipients selected were hydroxypropyl methylcellulose (HPMC), microcrystalline cellulose (MCC), lactose monohydrate (LAC), polyvinylpyrrolidone (PVP), talc (TALC), croscarmellose sodium (CCS), and magnesium stearate (MgSTE). According to DSC results, physical interactions were found between RA and HPMC, LAC, CCS, and MgSTE. The TG analyses confirmed the physical interactions and suggested chemical incompatibility. FTIR revealed physical interaction of RA with TALC and MgSTE and the ssNMR confirmed the physical interaction showed by FTIR and excluded the presence of chemical incompatibility. By IST, the greatest loss of RA content was found to CCS and MgSTE (>15%), demonstrating chemical incompatibilities with RA. High temperatures used in DSC and TG analyses could be responsible for incompatibilities in binary mixtures (BMs) with HPMC and LAC, while temperature above 25 °C and presence of water were factors that promote incompatibilities in BMs with CCS and MgSTE. Overall results demonstrate that RA was compatible with MCC and PVP.

15.
J Pharm Biomed Anal ; 170: 8-15, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30901720

RESUMO

The assessment of polymorphism is a problematical issue for regulatory agencies, because variations among crystalline forms of active pharmaceutical ingredient (API) can lead to changes in the efficacy and safety of formulated product. Such conversions are very hard to be detected, thus, the development of techniques for the identification, characterization and quantification of polymorphs results essential in all stages of the manufacturing process. The presence of excipients in formulated products may change the crystal stability of an API, by catalyzing a polymorphic transformation or stabilizing the less stable form. As paradox, all suitable analytical techniques (spectroscopies, thermal analysis, NMR and DRX, and others) for polymorphic analysis are affected by excipients. A deep understanding of the polymorphism-excipient relationship is in full accordance with Quality by Design (QbD) paradigm, the systematic approach focused in quality building into a product based in the full understanding of the products and process. In this work, a novel approach based on thermal stress, MIR monitoring, multivariate curve resolution with alternating least squares (MCR-ALS) and kinetic analysis was developed and applied to monitor polymorphism behavior of model API in formulated products. Commercial tablets, physical mixtures and commercial API, were processed and analyzed under the proposed approach. Commercial tablets of MFA revealed a fast conversion to Form II, contrasting to the behavior of the pure API. Physical mixtures showed similar behavior to commercial tablets, thus reduction in transformation times was related to MFA-excipients physical interaction, even at surface level. Calorimetric studies support the conclusion obtained. The developed approach could be extended to others APIs and other stress sources (humidity, solvents, mechanical forces and its combinations), being a valuable tool for QbD environment.


Assuntos
Excipientes/química , Ácido Mefenâmico/química , Química Farmacêutica/métodos , Cristalização/métodos , Umidade , Cinética , Análise dos Mínimos Quadrados , Comprimidos/química
16.
Int J Pharm ; 545(1-2): 170-175, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29729408

RESUMO

The aim of this study was to develop solid lipid nanoparticles (SLN) and introduce them into a direct compression process to evaluate their lubricant properties. The study consisted of preparing glyceryl behenate SLN (Compritol® 888 ATO) by hot dispersion, and magnesium stearate SLN by a novel nanoprecipitation/ion exchange method. The ejection force was measured for nanosystems and raw materials in a formulation typically used for direct compression. The smallest particle sizes obtained were 456 nm for Compritol® 888 ATO and 330 nm for magnesium stearate. Results show that the NPs used as lubricants in a direct compression model formulation provided efficient lubrication by maintaining the lubricating properties of the system, thereby decreasing the amount of lubricant used compared to the raw material. The lubricating effect showed an increase of 15-30% for magnesium stearate and Compritol® 888 ATO, compared to the raw material at concentrations above 2%.


Assuntos
Portadores de Fármacos , Ácidos Graxos/química , Lipídeos/química , Lubrificantes/química , Nanopartículas , Ácidos Esteáricos/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos , Troca Iônica , Nanotecnologia , Tamanho da Partícula
17.
J Pharm Biomed Anal ; 149: 612-617, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29202440

RESUMO

The aim of this work was to evaluate the compatibility of (+)-catechin (CA) and excipients commonly used to prepare micro and nanoemulsions using thermal analysis along with complementary assays. Lipid compounds labrasol, plurol and ethyl oleate were combined with CA according to a simplex centroid mixture design and possible interactions between them were determined. Differential scanning calorimetry and thermogravimetric analyses were carried out together with Fourier transform infrared spectroscopy (FTIR) and morphologic characterization of the samples. A quantitative evaluation of thermal events involved in CA melting peak and initial sample decomposition temperature were performed. FTIR evaluation suggested an initial decomposition of CA mixtures exposed to a thermal aging depending on their composition corroborated by the darkening of these samples. The multiple regression analysis considering the thermal data revealed a thermal interaction compromising CA stability in multicomponent samples. Mixtures containing ethyl oleate exhibited a negative synergic action of this fatty acid with the others two lipid compounds (negative coefficients for two-factor and three-factor interaction terms). Indeed, samples decomposition was anticipated by at least 10°C in the case of ternary and quaternary mixtures containing ethyl oleate. In conclusion, CA formulations produced with lipid components must have their stability closely monitored and production process involving heating should be avoided, especially in formulations containing ethyl oleate.


Assuntos
Catequina/química , Composição de Medicamentos/métodos , Excipientes/química , Ácidos Oleicos/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Incompatibilidade de Medicamentos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Emulsões , Glicerídeos/química , Glicerídeos/farmacologia , Temperatura Alta/efeitos adversos , Nanopartículas/química , Ácidos Oleicos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Fatores de Tempo
18.
J Pharm Innov ; 12(2): 142-154, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28983328

RESUMO

PURPOSE: 5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. METHODS: Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. RESULTS: Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. CONCLUSIONS: The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform.

19.
J Pharm Biomed Anal ; 137: 196-203, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131059

RESUMO

The objective of this work was to access thymol-excipient compatibility using an alternative protocol of mixture design subsidizing the development of nanostructures lipid carriers containing this drug. Simultaneous DTA-TG analyses associated with infrared spectroscopy were performed according to simplex centroid mixture designs with three components. Two designs were used: the design A containing stearic acid (SA), soybean lecithin (LC), and sodium taurodeoxycholate (TAU) and the design B, where TAU was replaced by polysorbate 80 (P80). Assays allowed for a quantitative evaluation of thermal events involved with thymol (TML) - melting and evaporation -, as well as events related to excipients decomposition and overall system stability. Although the anionic surfactant TAU did not interact with TML in solid state, chemical and physical stability were compromised after drug melting. Alternatively, nonionic surfactant P80 could be a good excipient option, as TML formulation stability was not influenced by it. Fatty acid SA did not compromise TML stability alone, but, when in combination with other formulation components, negative interaction leading to a possible decomposition of the system was observed. Finally, phospholipid LC solubilizes TML extending its evaporation to higher temperatures; hence, drug stability may be increased. In conclusion, the use of mixture design in the evaluation of multicomponent systems is a valuable tool for identification of synergistic effects of excipients, providing more complete information on formulation development. In addition, the association of techniques employed allowed inferring with certainty if thermal interactions could compromise formulation stability.


Assuntos
Excipientes/química , Nanopartículas/química , Nanoestruturas/química , Timol/química , Química Farmacêutica/métodos , Incompatibilidade de Medicamentos , Estabilidade de Medicamentos , Fosfolipídeos/química , Espectrofotometria Infravermelho/métodos , Tensoativos/química
20.
Clin Case Rep ; 2(6): 258-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25548626

RESUMO

KEY CLINICAL MESSAGE: Pharmaceutical excipients need careful observation as they play a significant role in treatment outcomes. It is imperative for a physician to collect complete patient profile before prescribing new medications for current treatment. We present a case report on the significance of pharmaceutical excipients in prescribed medicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA