Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Heliyon ; 10(13): e33698, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39055849

RESUMO

The distribution of carbapenemases in Carbapenem-Resistant Enterobacterales (CRE) has recently undergone a change in our region. According to the Colombian National Institute of Health, there is an increasing prevalence of NDM and NDM-KPC co-producing strains. We carried-out an ambispective cohort study of adult inpatients from Hospital Universitario San Ignacio (2021-2023), infected or colonized with CRE, in which carbapenemases immunochromatographic assay was performed. Out of the 150 patients included in the study, 71.3 % presented with an infection, and carbapenemases were detected in 92.7 % of these cases. Among them, KPC predominated (54 %), while 16.7 % demonstrated enzyme coproductions, mainly KPC-NDM. CRE infected patients had an 18.7 % 30-days mortality, but we could not demonstrate an association between type of carbapenemase and mortality rate (p = 0.82). Logistic regression analysis suggested that ICU admission was independently correlated to fatality (OR 5.08; CI 1.68-16.01). NDM and KPC-NDM presence in CRE poses a public health threat and a therapeutic challenge, with unknown mortality differences according to the carbapenemases pattern. Nevertheless, there was not an association between enzyme type and mortality.

2.
Infect Prev Pract ; 6(3): 100379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39006243

RESUMO

Members of the genus Phytobacter (order Enterobacterales) are isolated from the natural environment and clinical settings. Identification of Phytobacter strains based on biochemical characteristics is complicated due to taxonomic confusion, and they are often misidentified by automated identification systems in laboratories. In this study we describe the first three clinical cases associated with Phytobacter spp. reported in Argentina. We describe the identification, the molecular analysis using whole genome sequencing and the potential clinical relevance.

3.
Heliyon ; 10(12): e33368, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027427

RESUMO

Background: Carbapenemase-producing Enterobacterales (CPE) represents a significant threat to global health. This study aimed to characterize clinically and molecularly the CPE isolated from rectal swabs of patients in the intensive care units (ICUs) of a tertiary hospital in Cali, Colombia. Methods: This was a cross-sectional observational study. Rectal swabs from patients admitted to the ICUs were collected. Bacterial identification and carbapenemase production were determined using phenotypic and molecular methods. Demographic and clinical data were extracted from electronic medical records. Results: The study included 223 patients. Thirty-six patients (36/223, 16.14 %) were found to be colonized or infected by CPE. Factors such as prolonged stay in the ICU, previous exposure to carbapenem antibiotics, use of invasive procedures, and admission due to trauma were associated with CPE. Klebsiella pneumoniae (52.5 %) was the most prevalent microorganism, and the dominant carbapenemases identified were KPC (57.8 %) and NDM (37.8 %). Conclusion: Distinguishing carbapenemase subtypes can provide crucial insights for controlling dissemination in ICUs in Cali, Colombia.

4.
Vet Microbiol ; 296: 110196, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067146

RESUMO

Bacterial antibiotic resistance is a public health problem affecting humans and animals. This study focuses on identifying Gram-negative bacilli (GNB) (MALDI-TOF MS and Klebsiella MALDI TypeR) resistant to antimicrobials in freshly emitted feces of healthy captive and rescued wild birds from a zoo in Brazil. Birds from the zoo and rescued from sixteen different orders were investigated. Resistant bacteria from feces were selected (MacConkey agar with 2 µg/mL cefotaxime). Genomic similarity and plasmid were investigated by Pulsed-Field Gel Electrophoresis of XbaI fragments (XbaI-PFGE) and S1-PFGE. Polymerase Chain Reaction (PCR) was performed to search for beta-lactamase genes. From 80 birds included, 26 from the zoo (50 %) and 18 rescued wild birds (64 %) presented cefotaxime-resistant GNB. E. coli and Klebsiella spp were the most prevalent species. Among 65 isolates from the zoo and rescued wild birds, 75 % were considered multidrug-resistant (MDR). The majority of the isolates were extended-spectrum beta-lactamases (ESBL) producing and resistant to enrofloxacin. blaCTX-M-GROUP-1, blaTEM, and blaSHV were the most detected genes, and blaKPC was detected in K. pneumoniae complex. According to genomic similarity results, some identical profiles were found in birds with no known contact among the zoo or rescued birds. Several isolates carried one to three plasmids (15-350 kb). The presence of multidrug-resistant (MDR) isolates from healthy captive and wild birds brings novel data on the dissemination of these elements to the environment.


Assuntos
Animais Selvagens , Antibacterianos , Aves , Fezes , beta-Lactamases , Animais , Brasil/epidemiologia , Aves/microbiologia , Antibacterianos/farmacologia , Fezes/microbiologia , Animais Selvagens/microbiologia , beta-Lactamases/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/classificação , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana Múltipla/genética , Animais de Zoológico/microbiologia , Plasmídeos/genética , Farmacorresistência Bacteriana/genética
5.
J Clin Microbiol ; 62(7): e0125523, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38904386

RESUMO

Prompt and precise identification of carbapenemase-producing organisms is crucial for guiding clinical antibiotic treatments and limiting transmission. Here, we propose modifying the Blue Carba test (BCT) and Carba NP-direct (CNPd) to identify molecular carbapenemase classes, including dual carbapenemase strains, by adding specific Class A and Class B inhibitors. We tested 171 carbapenemase-producing Gram-negative bacilli strains-21 in Class A (KPC, NMC, SME), 58 in Class B (IMP, VIM, NDM, SPM), and 92 with dual carbapenemase production (KPC+NDM, KPC+IMP, KPC+VIM), all previously positive with BCT or CNPd. We also included 13 carbapenemase non-producers. ß-lactamases were previously characterized by PCR. The improved BCT/CNPd methods detect imipenem hydrolysis from an imipenem-cilastatin solution, using pH indicators and Class A (avibactam) and/or Class B (EDTA) inhibitors. Results were interpreted visually based on color changes. CNPd achieved 99.4% sensitivity and 100% specificity in categorizing carbapenemases, while BCT had 91.8% sensitivity and 100% specificity. Performance varied by carbapenemase classes: both tests classified all Class A-producing strains. For Class B, the CNP test identified 57/58 strains (98.3%), whereas the BCT test, 45/58 strains (77.6%), with non-fermenters posing the greatest detection challenge. For Classes A plus B dual producers, both tests performed exceptionally well, with only one indeterminate strain for the BCT. The statistical comparison showed both methods had similar times to a positive result, with differences based on the carbapenemase class or bacterial group involved. This improved assay rapidly distinguishes major Class A or Class B carbapenemase producers among Gram-negative bacilli, including dual-class combinations, in less than 2 hours. IMPORTANCE: Rapid and accurate identification of carbapenemase-producing organisms is of vital importance in guiding appropriate clinical antibiotic treatments and curbing their transmission. The emergence of negative bacilli carrying multiple carbapenemase combinations during and after the severe acute respiratory syndrome coronavirus 2 pandemic has posed a challenge to the conventional biochemical tests typically used to determine the specific carbapenemase type in the isolated strains. Several initiatives have aimed to enhance colorimetric methods, enabling them to independently identify the presence of Class A or Class B carbapenemases. Notably, no previous efforts have been made to distinguish both classes simultaneously. Additionally, these modifications have struggled to differentiate between carriers of multiple carbapenemases, a common occurrence in many Latin American countries. In this study, we introduced specific Class A and Class B carbapenemase inhibitors into the Blue Carba test (BCT) and Carba NP-direct (CNP) colorimetric assays to identify the type of carbapenemase, even in cases of multiple carbapenemase producers within these classes. These updated assays demonstrated exceptional sensitivity and specificity (≥ 90%) all within a rapid turnaround time of under 2 hours, typically completed in just 45 minutes. These in-house enhancements to the BCT and CNP assays present a rapid, straightforward, and cost-effective approach to determining the primary carbapenemase classes. They could serve as a viable alternative to molecular biology or immuno-chromatography techniques, acting as an initial diagnostic step in the process.


Assuntos
Antibacterianos , Proteínas de Bactérias , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/análise , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/classificação , Humanos , Antibacterianos/farmacologia , Sensibilidade e Especificidade , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Imipenem/farmacologia
6.
Eur J Clin Microbiol Infect Dis ; 43(7): 1407-1417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733425

RESUMO

PURPOSE: To evaluate the performance of the rapid colorimetric polymyxin B microelution (RCPEm) in determining polymyxin B resistance directly from Enterobacterales-positive blood cultures. METHODS: A set volume of positive blood culture bottles (diluted 1:10) was inoculated into a glucose-broth-phenol red solution (NP solution), where a polymyxin B disk was previously eluted (final concentration of 3 µg/mL). Test was read each 1 h for up to 4 h. Color change from red/orange to yellow indicated resistant isolates. Results were compared to the reference method, broth microdilution (BMD), performed from colonies grown on solid media from the same blood culture bottle. RESULTS: One hundred fifty-two Enterobacterales-positive blood cultures were evaluated, 22.4% (34/152) of them resistant to polymyxin B (including 6.6% with borderline MICs). When performing directly from positive blood cultures (RCPEm-BC), specificity and sensitivity were 99.1% and 94.1%, respectively. Of note, 79.4% (27/34) of truly resistant isolates required 3 h of incubation, compared to the 18 ± 2 h incubation that microtiter plates of BMD demand before reading can be performed. CONCLUSIONS: RCPEm directly from blood cultures has great potential to be part of the routine of clinical microbiology laboratories to establish polymyxin B susceptibility, impacting outcome of patients with bloodstream infections caused by carbapenem-resistant Enterobacterales.


Assuntos
Antibacterianos , Hemocultura , Colorimetria , Testes de Sensibilidade Microbiana , Polimixina B , Polimixina B/farmacologia , Humanos , Colorimetria/métodos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Hemocultura/métodos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Sensibilidade e Especificidade , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/diagnóstico , Farmacorresistência Bacteriana , Bacteriemia/microbiologia , Bacteriemia/diagnóstico
7.
Antibiotics (Basel) ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786176

RESUMO

BACKGROUND: Assessing the risk of multidrug-resistant colonization and infections is pivotal for optimizing empirical therapy in hematopoietic stem cell transplants (HSCTs). Limited data exist on extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E) colonization in this population. This study aimed to assess whether ESBL-E colonization constitutes a risk factor for ESBL-E bloodstream infection (BSI) and to evaluate ESBL-E colonization in HSCT recipients. METHODS: A retrospective analysis of ESBL-E colonization and BSI in HSCT patients was conducted from August 2019 to June 2022. Weekly swabs were collected and cultured on chromogenic selective media, with PCR identifying the ß-lactamase genes. Pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) assessed the colonizing strains' similarities. RESULTS: Of 222 evaluated HSCT patients, 59.45% were colonized by ESBL-E, with 48.4% at admission. The predominant ß-lactamase genes were blaTEM (52%) and blaSHV (20%). PFGE analysis did not reveal predominant clusters in 26 E. coli and 15 K. pneumoniae strains. WGS identified ST16 and ST11 as the predominant sequence types among K. pneumoniae. Thirty-three patients developed thirty-five Enterobacterales-BSIs, with nine being third-generation cephalosporin-resistant. No association was found between ESBL-E colonization and ESBL-BSI (p = 0.087). CONCLUSIONS: Although the patients presented a high colonization rate of ESBL-E upon admission, no association between colonization and infection were found. Thus, it seems that ESBL screening is not a useful strategy to assess risk factors and guide therapy for ESBL-BSI in HSCT-patients.

8.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702700

RESUMO

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Assuntos
Antibacterianos , Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , beta-Lactamases , Animais , Gatos , Cães , Doenças do Gato/microbiologia , Doenças do Gato/epidemiologia , beta-Lactamases/genética , Argentina/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Testes de Sensibilidade Microbiana , Animais de Estimação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia
9.
Diagn Microbiol Infect Dis ; 109(2): 116235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458096

RESUMO

OBJECTIVES: Ceftazidime-avibactam (CAZ-AVI) is an option for infections caused by MDR gram-negative bacilli. In this study, we aimed to analyze the in vitro antimicrobial activity of CAZ-AVI and other antimicrobial agents against gram-negative bacilli that were collected in Colombia between 2019 and 2021 from patients with bacteremia and skin and soft-tissue infections (SSTIs). METHODS: A total of 600 Enterobacterales and 259 P. aeruginosa strains were analyzed. The phenotypic resistance of isolates, particularly non-susceptibility to meropenem, multidrug-resistant (MDR) isolates, and difficult-to-treat (DTR) P. aeruginosa, was evaluated according to CLSI breakpoints. RESULTS: Enterobacterales had the most susceptibility to CAZ-AVI (96.5 %) and tigecycline (95 %). Tigecycline and CAZ-AVI were the antimicrobial agents with the most in vitro activity against carbapenem-resistant Enterobacterales (CRE). CAZ-AVI was the antimicrobial treatment with the most activity against P. aeruginosa. CONCLUSIONS: Tigecycline and CAZ-AVI were the antimicrobial agents with the most activity against CRE and MDR Enterobacterales. For P. aeruginosa, CAZ-AVI was the antimicrobial treatment with the most in vitro activity.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Bacteriemia , Ceftazidima , Combinação de Medicamentos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Infecções dos Tecidos Moles , Tigeciclina , Humanos , Ceftazidima/farmacologia , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/tratamento farmacológico , Colômbia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Tigeciclina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/tratamento farmacológico
10.
J Glob Antimicrob Resist ; 37: 37-41, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408561

RESUMO

BACKGROUND: The rapid and global spread of Escherichia coli carrying mcr-type genes at the human-animal-environmental interface has become a serious global public health problem. OBJECTIVE: To perform a genomic investigation of a colistin-resistant E. coli strain (14005RM) causing urinary tract infection, using a hybrid de novo assembly of Illumina/Nanopore sequence data, presenting phylogenomic insights into the relationship with mcr-1-positive strains circulating at the human-animal-environmental interface, in Brazil. METHODS: Genomic DNA was sequenced using both the Illumina NexSeq and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: The genome assembly size was 5 333 039 bp. The mcr-1.5-positive E. coli strain 14005RM belongs to the sequence type ST354 and presented a broad resistome (antibiotics, heavy metals, disinfectants, and glyphosate) and virulome. The mcr-1.5 gene was carried by an IncI2 plasmid (p14005RM, sizing 65,458 kb). Full genome SNP-based phylogenetic analysis reveals that mcr-1.5-producing E. coli strain 14005RM is highly related (> 98% identity) to colistin-resistant mcr-1.1-positive ST354 lineages associated with urinary tract infections in Brazil since 2015. CONCLUSION: Mobile colistin resistance within the Brazilian One Health microbiosphere is mediated by mcr gene variants propagated by IncX4, IncHI2, and IncI2 plasmids, circulating among global clones of E. coli.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Genoma Bacteriano , Filogenia , Infecções Urinárias , Infecções Urinárias/microbiologia , Colistina/farmacologia , Brasil , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Genômica , Sequenciamento Completo do Genoma
11.
J Glob Antimicrob Resist ; 36: 389-392, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266960

RESUMO

BACKGROUND: Carbapenemase-producing Citrobacter freundii has been reported as a leading cause of healthcare-associated infections. Particularly, C. freundii belonging to the sequence type (ST) 18 is considered to be an emerging nosocomial clone. OBJECTIVES: To report the genomic background and phylogenomic analysis of a multidrug-resistant NDM-1-producing C. freundii ST18 (strain CF135931) isolated from an endangered green sea turtle affected by plastic pollution in Brazil. METHODS: Genomic DNA was extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Workbench, and in silico analysis accomplished by bioinformatics tools. For phylogenomic analysis, publicly available C. freundii (txid:546) genome assemblies were retrieved from the NCBI database. RESULTS: The genome size was calculated at 5 290 351 bp, comprising 5263 total genes, 4 rRNAs, 77 tRNAs, 11ncRNAs, and 176 pseudogenes. The strain belonged to C. freundii ST18, whereas resistome analysis predicted genes encoding resistance to ß-lactams (blaNDM-1, blaOXA-1, blaCMY-117, and blaTEM-1C), aminoglycosides (aph(3'')-Ib, aadA16, aph(3')-VI, aac(6')-Ib-cr, and aph(6)-Id), quinolones (aac(6')-Ib-cr), macrolides (mph(A) and erm(B)), sulphonamides (sul1 and sul2), tetracyclines (tetA and tetD), and trimethoprim (dfrA27). The phylogenomic analysis revealed that CF135931 strain is closely related to international human-associated ST18 clones producing NDM-1. CONCLUSION: Genomic surveillance efforts are necessary for robust monitoring of the emergence of drug-resistant strains and WHO critical priority pathogens within a One Health framework. In this regard, this draft genome and associated data can improve understanding of dissemination dynamics of nosocomial clones of carbapenemase-producing C. freundii beyond hospital walls. In fact, the emergence of NDM-1-producing C. freundii of global ST18 in wildlife deserves considerable attention.


Assuntos
Infecção Hospitalar , Tartarugas , Animais , Humanos , Citrobacter freundii/genética , Antibacterianos/farmacologia , Genômica , Proteínas Repressoras
12.
Microbiol Spectr ; 12(2): e0250323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193666

RESUMO

Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-ß-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The blaNDM-1 gene was located in the truncated ΔISAba125 element, and the blaKPC-2 gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (blaNDM-1 and blaKPC-2) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The blaKPC-2 genes were located in Tn4401a transposons, while the blaNDM-1 genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.


Assuntos
Anti-Infecciosos , Proteínas de Bactérias , Peru , Centros de Atenção Terciária , Proteínas de Bactérias/genética , beta-Lactamases/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Antibacterianos , Testes de Sensibilidade Microbiana
13.
Clin Transplant ; 38(1): e15173, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877950

RESUMO

BACKGROUND: Cirrhotic patients are highly exposed to healthcare services and antibiotics. Although pre-liver transplantation (LT) infections are directly related to the worsening of liver function, the impact of these infections on LT outcomes is still unclear. This study aimed to identify the effect of multidrug-resistant microorganism (MDRO) infections before LT on survival after LT. METHODS: Retrospective study that included patients who underwent LT between 2010 and 2019. Variables analyzed were related to patients' comorbidities, underlying diseases, time on the waiting list, antibiotic use, LT surgery, and occurrences post-LT. Multivariate analyses were performed using logistic regression, and Cox regression for survival analysis. RESULTS: A total of 865 patients were included; 351 infections were identified in 259 (30%) patients, of whom 75 (29%) had ≥1 pre-LT MDRO infection. The most common infection was spontaneous bacterial peritonitis (34%). The agent was identified in 249(71%), 53(15%) were polymicrobial. The most common microorganism was Klebsiella pneumoniae (18%); the most common MDRO was ESBL-producing Enterobacterales (16%), and carbapenem-resistant (CR) Enterobacterales (10%). Factors associated with MDRO infections before LT were previous use of therapeutic cephalosporin (p = .001) and fluoroquinolone (p = .001), SBP prophylaxis (p = .03), ACLF before LT (p = .03), and days of hospital stay pre-LT (p < .001); HCC diagnosis was protective (p = .01). Factors associated with 90-day mortality after LT were higher MELD on inclusion to the waiting list (p = .02), pre-LT MDRO infection (p = .04), dialysis after LT (p < .001), prolonged duration of LT surgery (p < .001), post-LT CR-Gram-negative bacteria infection (p < .001), and early retransplantation (p = .004). CONCLUSION: MDRO infections before LT have an important impact on survival after LT.


Assuntos
Infecções Bacterianas , Carcinoma Hepatocelular , Doenças Transmissíveis , Neoplasias Hepáticas , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Antibacterianos/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/etiologia , Doenças Transmissíveis/tratamento farmacológico
14.
J Glob Antimicrob Resist ; 36: 135-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072242

RESUMO

BACKGROUND: The global spread of extended-spectrum ß-lactamase (ESßL)-producing Escherichia coli has been considered a One Health issue that demands continuous genomic epidemiology surveillance in humans and non-human hosts. OBJECTIVES: To report the occurrence and genomic data of ESßL-producing E. coli strains isolated from South American llamas inhabiting a protected area with public access in the Andean Highlands of Peru. METHODS: Two ESßL-producing E. coli strains (E. coli L1LB and L2BHI) were identified by MALDI-TOF. Genomic DNAs were extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Genomic Workbench and in silico prediction was accomplished by curated bioinformatics tools. SNP-based phylogenomic analysis was performed using publicly available genomes of global E. coli ST10. RESULTS: Escherichia coli L1LB generated a total of 4 000 11 and L2BHI a total of 4 002 54 paired-end reads of ca.164 × and ca. 157 ×, respectively. Both E. coli strains were assigned to serotype O8:H4, fimH41, and ST10. The blaCTX-M-65 ESßL gene, along with other medically important antimicrobial resistance genes, was predicted. Broad virulomes, including the presence of the astA gene, were confirmed. The phylogenomic analysis revealed that E. coli L1LB and L2BHI strains are closely related to isolates from companion animals and human hosts, as well as environmental strains, previously reported in North America, South America, Africa, and Asia. CONCLUSION: Presence of ESßL-producing E. coli ST10 in South American camelids with historical and cultural importance supports successful expansion of international clones of priority pathogens in natural areas with public access.


Assuntos
Camelídeos Americanos , Infecções por Escherichia coli , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Peru , Antibacterianos/farmacologia , beta-Lactamases/genética , Genômica
15.
Infect Dis Ther ; 13(1): 237-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102448

RESUMO

INTRODUCTION: Shorter courses of antimicrobials have been shown to be non-inferior to longer, "traditional" duration of therapies, including for some severe healthcare-associated infections, with a few exceptions. However, evidence is lacking regarding shorter regimes against severe infections by multidrug-resistant Gram-negative bacteria (MDR-GNB), which are often caused by distinct strains and commonly treated with second-line antimicrobials. In the duratiOn of theraPy in severe infecTIons by MultIdrug-reSistant gram-nEgative bacteria (OPTIMISE) trial, we aim to assess the non-inferiority of 7-day versus 14-day antimicrobial therapy in critically ill patients with severe infections caused by MDR-GNB. METHODS: This is a randomized, multicenter, open-label, parallel controlled trial to assess the non-inferiority of 7-day versus 14-day of adequate antimicrobial therapy for intensive care unit (ICU)-acquired severe infections by MDR-GNB. Adult patients with severe infections by MDR-GNB initiated after 48 h of ICU admission are screened for eligibility. Patients are eligible if they proved to be hemodynamically stable and without fever for at least 48 h on the 7th day of adequate antimicrobial therapy. After consenting, patients are 1:1 randomized to discontinue antimicrobial therapy on the 7th (± 1) day or to continue for a total of 14th (± 1) days. PLANNED OUTCOMES: The primary outcome is treatment failure, defined as death or relapse of infection within 28 days after randomization. Non-inferiority will be achieved if the upper edge of the two-tailed 95% confidence interval of the difference between the clinical failure rate in the 7-day and the 14-day group is not higher than 10%. CONCLUSION: The OPTIMISE trial is the first randomized controlled trial specifically designed to assess the duration of antimicrobial therapy in patients with severe infections by MDR-GNB. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05210387. Registered on 27 January 2022. Seven Versus 14 Days of Antibiotic Therapy for Multidrug-resistant Gram-negative Bacilli Infections (OPTIMISE).

16.
Rev. chil. infectol ; Rev. chil. infectol;40(6): 589-598, dic. 2023. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1530002

RESUMO

INTRODUCCIÓN: Las bacteriemias por Enterobacterales productores de carbapenemasa KPC (EPC-KPC) presentan una mortalidad elevada y opciones terapéuticas limitadas. OBJETIVOS: Describir y comparar la evolución de los pacientes con bacteriemia por EPC-KPC tratados con ceftazidima/avibactam (CA) frente a otros antimicrobianos (OA). PACIENTES Y MÉTODOS: Estudio prospectivo y retrospectivo de casos y controles. Se incluyeron pacientes adultos con bacteriemia por EPC-KPC, con una proporción entre casos tratados con CA y controles tratados con OA. de 1:2. Se analizaron variables clínicas, epidemiológicas y de evolución. RESULTADOS: Se incluyeron 48 pacientes (16 CA y 32 OA). Los casos se encontraban más frecuentemente neutropénicos (50 vs.16%, p = 0,012); asimismo, presentaron medianas de score de APACHE II más altas y de score de Pitt más bajas. El 65% de la cohorte total presentó un foco clínico y Klebsiellapneumoniae fue el microorganismo más frecuentemente aislado. Los casos recibieron una mayor proporción de tratamiento antimicrobiano empírico adecuado (81 vs. 53%, p = 0,05). La antibioterapia dirigida en casos y controles fue combinada en 38 y 91%, p = 0,009. Los casos presentaron menor mortalidad al día 7 y al día 30 relacionada a infección (0 vs. 22%, p = 0,04 y 0 vs. 34%, p = 0,008). Solo los controles desarrollaron shock, ingresaron a la unidad de cuidados intensivos y presentaron bacteriemia de brecha. CONCLUSIÓN: CA mostró beneficio clínico frente a OA para el tratamiento de pacientes con bacteriemia por EPC-KPC.


BACKGROUND: KPC-producing Enterobacterales bacteremia (KPCCPE) is associated with a high mortality rate and limited therapeutic options. AIM: To describe and compare the outcome of patients with KPC-CPE bacteremia treated with ceftazidime/avibactam (CA) versus other antibiotics (OA). METHODS: Prospective and retrospective cases and control study performed in adult patients with KPC-CPE bacteremia, with a 1:2 ratio between cases treated with CA. and controls treated with OA. Clinical, epidemiological, and outcome variables were analyzed. RESULTS: Forty-eight patients (16 CA and 32 OA) were included. Cases were more frequently neutropenic (50 vs. 16%, p = 0.012), presented higher median APACHE II score and lower Pitt score. Of the total cohort, 65% had a clinical source, and Klebsiella pneumoniae was the most frequently isolated microorganism. Cases received more adequate empirical antibiotic treatment (81 vs. 53%, p = 0.05). Targeted antibiotic therapy in cases and controls was combined in 38 and 91%, p = 0.009. Cases had a lower 7-day mortality and 30-day infection-related mortality (0 vs. 22%, p = 0.04 and 0 vs. 34%, p = 0.008). Only controls developed shock, were admitted to the intensive care unit, and had breakthrough bacteremia. CONCLUSION: CA. showed clinical benefit over OA in the treatment of patients with EPC-KPC bacteremia.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Ceftazidima/uso terapêutico , Bacteriemia/tratamento farmacológico , Infecções por Enterobacteriaceae/tratamento farmacológico , Compostos Azabicíclicos/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas de Bactérias , beta-Lactamases , Estudos de Casos e Controles , Ceftazidima/administração & dosagem , Evolução Clínica , Estudos Prospectivos , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Combinação de Medicamentos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/efeitos dos fármacos , Infecções por Enterobacteriaceae/mortalidade , Compostos Azabicíclicos/administração & dosagem , Inibidores de beta-Lactamases , Antibacterianos/administração & dosagem
17.
Environ Sci Pollut Res Int ; 30(53): 114678-114684, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845596

RESUMO

The environmental contamination plays a significant role in the emergence of antimicrobial resistance. In this study, we report a genomic analysis of an extensively drug-resistant and blaNDM-1-producing Klebsiella pneumoniae (EW807) strain recovered from a surface water sample. Strain EW807 belonged to sequence type (ST) 340 and serotype O4:KL15, a high-risk clone of the clonal group 258. This strain carried a broad resistome, including blaNDM-1 and blaCTX-M-15. The core genome multilocus sequence typing phylogenetic analysis revealed that the EW807 strain was most related to strains from Brazil and the USA. An IncX3 plasmid was identified harboring the blaNDM-1 gene, while an IncFIB(K) plasmid was detected carrying the blaCTX-M-15 in addition to multidrug resistance and multimetal tolerance regions. IncX3 and IncFIB(K) plasmids shared high similarity with plasmids from a human in China and a dog in Brazil, respectively. The regions harboring the blaNDM-1 and blaCTX-M-15 genes contained sequences from the Tn3 family. These findings suggest that IncX3 plasmid could play a role in the spread of NDM-1 in a post-pandemic scenario. To the best of our knowledge, this is the first report of blaNDM-1-producing K. pneumoniae ST340 O4:KL15 strain in the environment. Therefore, the presence of high-risk clones of K. pneumoniae carrying carbapenemases in the environment requires strict surveillance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Rios , Animais , Cães , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Genômica , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos , Rios/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
18.
Pathogens ; 12(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764972

RESUMO

Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total of 4877 16S-RMTase sequences were identified mainly in Enterobacterales and nonfermenting Gram-negative bacilli isolated from humans, animals, foods, and the environment during 1931-2023. Most of the sequences identified were found in the United States, Brazil, Canada, and Mexico, and the prevalence of 16S-RMTase genes have increased in the last five years (2018-2022). The three species most frequently carrying 16S-RMTase genes were Acinetobacter baummannii, Klebsiella pneumoniae, and Escherichia coli. The armA gene was the most prevalent, but other 16S-RMTase genes (e.g., rmtB, rmtE, and rmtF) could be emerging backstage. More than 90% of 16S-RMTase sequences in the Americas were found in North American countries, and although the 16S-RMTase genes were less prevalent in Central and South American countries, these findings may be underestimations due to limited genomic data. Therefore, whole-genome sequence-based studies focusing on aminoglycoside resistance using a One Health approach in low- and middle-income countries should be encouraged.

19.
Microbiol Spectr ; : e0037423, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671877

RESUMO

Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both isolates displayed resistance to broad-spectrum cephalosporins, ß-lactam inhibitors, and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions (Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible for CZA resistance profiles. Our results confirm the emergence of novel KPC variants associated with resistance to CZA in international clones of K. pneumoniae circulating in South America. IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its significant activity against KPC-2 producers. In recent years, reports of resistance to CZA have increased in this country, limiting its clinical application. In this study, we report the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South America, which is a critical issue deserving active surveillance.

20.
J Glob Antimicrob Resist ; 35: 143-148, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714380

RESUMO

OBJECTIVES: Ceftazidime-avibactam (CAZ-AVI) combines ceftazidime and a reversible ß-lactamase inhibitor that has shown activity against multidrug-resistant (MDR) Enterobacterales and P. aeruginosa. Using data from the Antimicrobial Testing Leadership and Surveillance program (ATLAS), this study examined the in vitro antimicrobial activity of CAZ-AVI and other antibiotics against Gram-negative bacteria collected from Chilean hospitals between 2015 and 2021. METHODS: Clinical isolates of Enterobacterales and P. aeruginosa were collected from three medical centres in Chile. Blood, abdominal fluid, urine, soft tissues, and respiratory tract samples were obtained from infected patients. Minimum inhibitory concentrations using the broth microdilution method were determined for susceptibility testing, and the Clinical and Laboratory Standards Institute (CLSI) breakpoints were used for interpreting the results. Extended-spectrum ß-lactamases (ESBL) and carbapenemase genes were also detected through polymerase chain reaction. RESULTS: A total of 2600 Enterobacterales and 836 P. aeruginosa were analysed. CAZ-AVI was the antibiotic with the highest in vitro activity against Enterobacterales (99.72%). The incidence of carbapenem-resistant Enterobacterales (CRE) was 1.5% (n = 39), and the antibiotics with the best in vitro activity were tigecycline (92.31%), CAZ-AVI (88.57%), and amikacin (79.49%). CAZ-AVI was the antibiotic with the best activity against ESBL-producing Enterobacterales (99.34%) and MDR Enterobacterales (99.31%). For KPC-producing Enterobacterales, susceptibility to amikacin was 100%, whereas susceptibility to CAZ-AVI was 91.67%. Regarding MDR and difficult-to-treat resistance P. aeruginosa, 44.83% and 38.99% were susceptible to CAZ-AVI, respectively. CONCLUSION: CAZ-AVI shows excellent in vitro activity against Enterobacterales in general, CRE, ESBL-producing Enterobacterales, and KPC-producing Enterobacterales. CAZ-AVI is also an option against MDR P. aeruginosa.


Assuntos
Amicacina , Ceftazidima , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Chile , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA