Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092740

RESUMO

Phaseolus vulgaris is a grain cultivated in vast areas of different countries. It is an excellent alternative to the other legumes in the Venezuelan diet and is of great agronomic interest due to its resistance to soil acidity, drought, and high temperatures. Phaseolus establishes symbiosis primarily with Rhizobium and Ensifer species in most countries, and this rhizobia-legume interaction has been studied in Asia, Africa, and the Americas. However, there is currently no evidence to show that rhizobia nodulate the endemic cultivars of P. vulgaris in Venezuela. Therefore, we herein investigated the phylogenetic diversity of plant growth-promoting and N2-fixing nodulating bacteria isolated from the root nodules of P. vulgaris cultivars in a different agroecosystem in Venezuela. In comparisons with other countries, higher diversity was found in isolates from P. vulgaris nodules, ranging from α- and ß-proteobacteria. Some isolates belonging to several new phylogenetic lineages within Bradyrhizobium, Ensifer, and Mesorhizobium species were also specifically isolated at some topographical regions. Additionally, some isolates exhibited tolerance to high temperature, acidity, alkaline pH, salinity stress, and high Al levels; some of these characteristics may be related to the origin of the isolates. Some isolates showed high tolerance to Al toxicity as well as strong plant growth-promoting and antifungal activities, thereby providing a promising agricultural resource for inoculating crops.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Variação Genética , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , DNA Bacteriano/genética , Fixação de Nitrogênio , Phaseolus/crescimento & desenvolvimento , Filogenia , Nodulação , Microbiologia do Solo , Venezuela
2.
Microorganisms ; 8(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225039

RESUMO

FadD is an acyl-coenzyme A (CoA) synthetase specific for long-chain fatty acids (LCFA). Strains mutated in fadD cannot produce acyl-CoA and thus cannot grow on exogenous LCFA as the sole carbon source. Mutants in the fadD (smc02162) of Sinorhizobium meliloti are unable to grow on oleate as the sole carbon source and present an increased surface motility and accumulation of free fatty acids at the entry of the stationary phase of growth. In this study, we found that constitutive expression of the closest FadD homologues of S. meliloti, encoded by sma0150 and smb20650, could not revert any of the mutant phenotypes. In contrast, the expression of Escherichia coli fadD could restore the same functions as S. meliloti fadD. Previously, we demonstrated that FadD is required for the degradation of endogenous fatty acids released from membrane lipids. Here, we show that absence of a functional fadD provokes a significant loss of viability in cultures of E. coli and of S. meliloti in the stationary phase, demonstrating a crucial role of fatty acid degradation in survival capacity.

3.
Mycorrhiza ; 30(1): 161-170, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31974639

RESUMO

Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that may associate with grapevine roots, improving stress tolerance, growth, and nutrition. AM fungi and PGPR enhance the production of plant secondary metabolites, including volatile organic compounds (VOCs) that play a key role in the interaction of plants with the environment and are involved in defence mechanisms. The aim of this study was to analyse the effects of an AM fungus and a rhizobacterium on plant growth and VOCs in Vitis vinifera cv. Cabernet Sauvignon roots to gain insight into the potential role of plant-rhizosphere microorganisms in vine growth and defence. Grapevines were inoculated or not with the AM fungus Funneliformis mosseae IN101 and/or the plant growth-promoting rhizobacterium Ensifer meliloti TSA41. Both microbial strains enhanced plant growth. Fifty-eight VOCs extracted from ground roots were identified using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. VOCs were induced by F. mosseae IN101, increasing up to 87% compared with control plants. Monoterpenes were strongly enhanced by F. mosseae IN101, increasing up to 113% compared with control plants. Interestingly, monoterpene alcohols related to plant defence, such as myrtenol, p-cymen-7-ol, and p-mentha-1.8-dien-7-ol were increased. By contrast, E. meliloti TSA41 did not significantly affect VOCs. The knowledge of the effects of AM fungi and PGPR on grapevine VOCs may contribute to an integrated and sustainable management of vineyards.


Assuntos
Glomeromycota , Micorrizas , Vitis , Compostos Orgânicos Voláteis , Raízes de Plantas
4.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31932537

RESUMO

Vigna is a genus of legumes cultivated in specific areas of tropical countries. Species in this genus are important crops worldwide. Vigna species are of great agronomic interest in Venezuela because Vigna beans are an excellent alternative to other legumes. However, this type of crop has some cultivation issues due to sensitivity to acidic soils, high temperatures, and salinity stress, which are common in Venezuela. Vigna species establish symbioses mainly with Bradyrhizobium and Ensifer, and Vigna-rhizobia interactions have been examined in Asia, Africa, and America. However, the identities of the rhizobia associated with V. radiata and V. unguiculata in Venezuela remain unknown. In the present study, we isolated Venezuelan symbiotic rhizobia associated with Vigna species from soils with contrasting agroecosystems or from fields in Venezuela. Several types of soils were used for bacterial isolation and nodules were sampled from environments characterized by abiotic stressors, such as high temperatures, high concentrations of NaCl, and acidic or alkaline pH. Venezuelan Vigna-rhizobia were mainly fast-growing. Sequencing of several housekeeping genes showed that in contrast to other continents, Venezuelan Vigna species were nodulated by rhizobia genus including Burkholderia, containing bacteria from several new phylogenetic lineages within the genus Bradyrhizobium. Some Rhizobium and Bradyrhizobium isolates were tolerant of high salinity and Al toxicity. The stress tolerance of strains was dependent on the type of rhizobia, soil origin, and cultivation history. An isolate classified as R. phaseoli showed the highest plant biomass, nitrogen fixation, and excellent abiotic stress response, suggesting a novel promising inoculant for Vigna cultivation in Venezuela.


Assuntos
Filogenia , Proteobactérias/classificação , Proteobactérias/fisiologia , Microbiologia do Solo , Simbiose , Vigna/microbiologia , DNA Bacteriano/genética , Genes Bacterianos/genética , Fixação de Nitrogênio/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Solo/química , Estresse Fisiológico , Venezuela , Vigna/crescimento & desenvolvimento
5.
Arch Microbiol ; 202(2): 309-322, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31659382

RESUMO

In northern Mexico, aridity, salinity and high temperatures limit areas that can be cultivated. To investigate the nature of nitrogen-fixing symbionts of Phaseolus filiformis, an adapted wild bean species native to this region, their phylogenies were inferred by MLSA. Most rhizobia recovered belong to the proposed new species Ensifer aridi. Phylogenetic analyses of nodC and nifH show that Mexican isolates carry symbiotic genes acquired through horizontal gene transfer that are divergent from those previously characterized among bean symbionts. These strains are salt tolerant, able to grow in alkaline conditions, high temperatures, and capable of utilizing a wide range of carbohydrates and organic acids as carbon sources for growth. This study improves the knowledge on diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico and further enlarges the spectrum of microsymbiont with which Phaseolus species can interact with, including cultivated bean varieties, notably under stressed environments. Here, the species Ensifer aridi sp. nov. is proposed as strain type of the Moroccan isolate LMR001T (= LMG 31426T; = HAMBI 3707T) recovered from desert sand dune.


Assuntos
Phaseolus/metabolismo , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Temperatura Alta , México , Phaseolus/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Tolerância ao Sal/genética , Areia , Análise de Sequência de DNA , Simbiose
6.
Arch Microbiol ; 202(2): 391-398, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31680188

RESUMO

Bacterial surface molecules have an important role in the rhizobia-legume symbiosis. Ensifer meliloti (previously, Sinorhizobium meliloti), a symbiotic Gram-negative rhizobacterium, produces two different exopolysaccharides (EPSs), termed EPS I (succinoglycan) and EPS II (galactoglucan), with different functions in the symbiotic process. Accordingly, we undertook a study comparing the potential differences in alfalfa nodulation by E. meliloti strains with differences in their EPSs production. Strains recommended for inoculation as well as laboratory strains and native strains isolated from alfalfa fields were investigated. This study concentrated on EPS-II production, which results in mucoid colonies that are dependent on the presence of an intact expR gene. The results revealed that although the studied strains exhibited different phenotypes, the differences did not affect alfalfa nodulation itself. However, subtle changes in timing and efficacy to the effects of inoculation with the different strains may result because of other as-yet unknown factors. Thus, additional research is needed to determine the most effective inoculant strains and the best conditions for improving alfalfa production under agricultural conditions.


Assuntos
Galactanos/metabolismo , Glucanos/metabolismo , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Fertilizantes/microbiologia , Regulação Bacteriana da Expressão Gênica , Nodulação/fisiologia , Simbiose/fisiologia
7.
Int J Biol Macromol ; 114: 18-25, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550419

RESUMO

Bioemulsifiers are able to stabilize oil-in-water emulsions and are very important in several industrial processes, including food processing. In this study, a bioemulsifier produced by Ensifer adhaerens JHT2 was tested for its ability to emulsify edible oils (canola, corn, palm, olive and soy). Emulsification of soy and canola oils was detected, but the highest emulsification index (EI) was obtained when JHT2 culture supernatant was used for the emulsification of palm oil (EI=100%). Bioemulsifier production was evaluated using nine culture media and different NaCl concentrations (0.5 to 10%), pH (4 to 10) and temperatures (28 to 42°C). The highest emulsification activity was detected in the supernatants of JHT2 grown in trypticase soy broth containing 0.5-1.0% NaCl, pH6-7 and temperatures of 28-37°C. Characterization of the bioemulsifier produced by JHT2 revealed typical characteristics of exopolysaccharides (EPS), constituting a backbone of (1→4)-ß-d-glucopyranosyl and (1→3)-ß-D-galactopyranosyl alternating with (1→4)-α-d-mannopyranosyl units that branch from the structure at O-2. Side chains are composed of units of (1→6)-ß-d-glucopyranosyl and 3-O-linked galactopyranosyl bearing a pyruvic acid acetal substitution at O-4 and O-6. Our results indicate that the EPS produced by Ensifer adhaerens JHT2 is a promising option for improving and maintaining stable emulsions in food prepared with edible oils.


Assuntos
Emulsificantes/química , Óleos de Plantas/química , Polissacarídeos Bacterianos/química , Rhizobiaceae/química
8.
In Vitro Cell Dev Biol Plant ; 52(5): 461-478, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818605

RESUMO

The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30 yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.

9.
New Phytol ; 209(1): 319-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214613

RESUMO

The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.


Assuntos
Mimosa/microbiologia , Rhizobium/genética , Simbiose , Proteínas de Bactérias/genética , Sequência de Bases , Evolução Biológica , Especificidade de Hospedeiro , México , Filogenia , Nodulação , Rhizobium/classificação , Rhizobium/fisiologia , Análise de Sequência de DNA
10.
FEMS Microbiol Lett ; 345(1): 22-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23672494

RESUMO

We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo
11.
Ann Bot ; 112(1): 179-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712450

RESUMO

BACKGROUND AND AIMS: The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. METHODS: Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. KEY RESULTS: Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. CONCLUSIONS: The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.


Assuntos
Espécies Introduzidas , Mimosa/microbiologia , Rhizobium/fisiologia , Simbiose , Inoculantes Agrícolas/genética , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Biodiversidade , Burkholderia/genética , Burkholderia/isolamento & purificação , Cupriavidus/genética , Cupriavidus/isolamento & purificação , Genes Bacterianos , Índia , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA