Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174156, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909803

RESUMO

Tropical forests are global biodiversity hotspots and are crucial in the global carbon (C) cycle. Understanding the drivers of aboveground carbon stock (AGC) in a heterogeneous and biodiverse system can shed light on the processes underlying the relationship between biodiversity and carbon accumulation. Here, we investigate how biodiversity, environment, and landscape structure affect AGC. We examined such associations in 349 plots comprising over 95,346 km2 the Atlantic Forest of southern Brazil, encompassing three forest types: Dense Ombrophylous Forest (DF), Mixed Ombrophylous Forest (MF), and Seasonal Deciduous Forest (SF). Each plot was described by environmental variables, landscape metrics, and biodiversity (species richness and functional diversity). We used diversity, environmental, and landscape variables to build generalized linear mixed models and understand which can affect the forest AGC. We found that species richness is associated positively with AGC in all forest types, combined and separately. Seasonal temperature and isothermality affect AGC in all forest types; additionally, stocks are positively influenced by annual precipitation in SF and isothermality in MF. Among landscape metrics, total fragment edge negatively affects carbon stocks in MF. Our results show the importance of species diversity for carbon stocks in subtropical forests. The climate effect was also relevant, showing the importance of these factors, especially in a world where climate change tends to affect forest stock capacity negatively.


Assuntos
Biodiversidade , Carbono , Florestas , Brasil , Carbono/análise , Mudança Climática , Clima Tropical , Ciclo do Carbono , Árvores
2.
J Anim Ecol ; 93(6): 755-768, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404168

RESUMO

Species in one ecosystem can indirectly affect multiple biodiversity components and ecosystem functions of adjacent ecosystems. The magnitude of these cross-ecosystem effects depends on the attributes of the organisms involved in the interactions, including traits of the predator, prey and basal resource. However, it is unclear how predators with cross-ecosystem habitat interact with predators with single-ecosystem habitat to affect their shared ecosystem. Also, unknown is how such complex top-down effects may be mediated by the anti-predatory traits of prey and quality of the basal resource. We used the aquatic invertebrate food webs in tank bromeliads as a model system to investigate these questions. We manipulated the presence of a strictly aquatic predator (damselfly larvae) and a predator with both terrestrial and aquatic habitats (spider), and examined effects on survival of prey (detritivores grouped by anti-predator defence), detrital decomposition (of two plant species differing in litter quality), nitrogen flux and host plant growth. To evaluate the direct and indirect effects each predator type on multiple detritivore groups and ultimately on multiple ecosystem processes, we used piecewise structural equation models. For each response variable, we isolated the contribution of different detritivore groups to overall effects by comparing alternate model formulations. Alone, damselfly larvae and spiders each directly decreased survival of detritivores and caused multiple indirect negative effects on detritus decomposition, nutrient cycling and host plant growth. However, when predators co-occurred, the spider caused a negative non-consumptive effect on the damselfly larva, diminishing the net direct and indirect top-down effects on the aquatic detritivore community and ecosystem functioning. Both detritivore traits and detritus quality modulated the strength and mechanism of these trophic cascades. Predator interference was mediated by undefended or partially defended detritivores as detritivores with anti-predatory defences evaded consumption by damselfly larvae but not spiders. Predators and detritivores affected ecosystem decomposition and nutrient cycling only in the presence of high-quality detritus, as the low-quality detritus was consumed more by microbes than invertebrates. The complex responses of this system to predators from both recipient and adjacent ecosystems highlight the critical role of maintaining biodiversity components across multiple ecosystems.


As espécies em um ecossistema podem afetar indiretamente múltiplos componentes da biodiversidade e funções ecossistêmicas em ecossistemas adjacentes. A magnitude destes efeitos entre ecossistemas depende dos atributos dos organismos envolvidos nas interações, incluindo características do predador, da presa e do recurso basal. No entanto, não está claro como os predadores com habitat em múltiplos ecossistemas interagem com predadores de um ecossistema único, e como isso afeta o ecossistema partilhado entre eles. Além disso, não se sabe como esses efeitos complexos do tipo top­down podem ser mediados pelas características antipredatórias da presa e pela qualidade do recurso basal. Usamos as teias alimentares de invertebrados aquáticos de bromélias­tanque como um sistema modelo para investigar essas questões. Nós manipulamos a presença de um predador estritamente aquático (larvas de zigópteros) e um predador com habitats terrestre e aquático (aranha), e examinamos os efeitos na sobrevivência de presas (grupos de detritívoros com diferentes estratégias de defesa antipredatória), decomposição de detritos foliares (de duas espécies de plantas diferindo na qualidade foliar), fluxo de nitrogênio e crescimento da planta hospedeira. Para avaliar os efeitos diretos e indiretos de cada tipo de predador em múltiplos grupos de detritívoros e, finalmente, em múltiplos processos ecossistêmicos, utilizamos modelos de equações estruturais por partes (piecewiseSEM). Para cada variável resposta, isolamos a contribuição de diferentes grupos de detritívoros bem como seus efeitos globais, comparando modelos alternativos. Larvas de zigópteros e aranhas diminuíram diretamente a sobrevivência dos detritívoros e causaram múltiplos efeitos negativos indiretos na decomposição de detritos, na ciclagem de nutrientes e no crescimento da planta hospedeira. No entanto, quando os predadores coocorreram, a aranha causou um efeito negativo não consumível na larva de zigóptero, diminuindo os efeitos líquidos, diretos e indiretos, do tipo top­down na comunidade de detritívoros aquáticos e no funcionamento do ecossistema. Tanto os atributos antipredatórios dos detritívoros quanto a qualidade dos detritos modularam a força e o mecanismo dessas cascatas tróficas. A interferência do predador foi mediada por detritívoros indefesos ou com defesa parcial. Entretanto, os detritívoros com defesas antipredatórias escaparam do consumo por larvas de zigópteros, mas não por aranhas. Predadores e detritívoros afetaram a decomposição do ecossistema e a ciclagem de nutrientes apenas na presença de detritos de alta qualidade, uma vez que os detritos de baixa qualidade foram consumidos mais por micróbios do que por invertebrados. As respostas complexas deste sistema aos predadores tanto de ecossistemas receptores quanto adjacentes destacam o papel crítico da manutenção dos componentes da biodiversidade em múltiplos ecossistemas.


Assuntos
Cadeia Alimentar , Larva , Comportamento Predatório , Aranhas , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Aranhas/fisiologia , Bromeliaceae/fisiologia , Ecossistema , Invertebrados/fisiologia
3.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994670

RESUMO

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biomassa , Rios/química , Biodiversidade
4.
Ecol Lett ; 24(9): 1976-1987, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34169638

RESUMO

Ecological theory recognizes the importance of the variety of species for maintaining the functioning of ecosystems and their derived services. We assert that when studying the effects of shifts in biodiversity levels using mathematical models, their dynamics must be sensitive to the variety of species traits but not to raw species numbers, a property that we call order-invariance. We present a testing procedure for verifying order-invariance of ecological network models -with or without trait adaptation- expressed as ODEs. Furthermore, we applied our test to several influential models used for evaluating biodiversity effects on ecosystem functioning. In most of the surveyed studies the equations failed our test. This raises doubts about the validity of previous results and calls for revisiting the theory derived from these studies. Our results foster the creation of artifact-free models, a necessary step towards building a more robust theory of biodiversity-driven ecosystem functioning.


Assuntos
Artefatos , Ecossistema , Biodiversidade , Modelos Biológicos , Fenótipo
5.
Biol Rev Camb Philos Soc ; 96(4): 1114-1134, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33709566

RESUMO

Secondary forests are increasingly important components of human-modified landscapes in the tropics. Successional pathways, however, can vary enormously across and within landscapes, with divergent regrowth rates, vegetation structure and species composition. While climatic and edaphic conditions drive variations across regions, land-use history plays a central role in driving alternative successional pathways within human-modified landscapes. How land use affects succession depends on its intensity, spatial extent, frequency, duration and management practices, and is mediated by a complex combination of mechanisms acting on different ecosystem components and at different spatial and temporal scales. We review the literature aiming to provide a comprehensive understanding of the mechanisms underlying the long-lasting effects of land use on tropical forest succession and to discuss its implications for forest restoration. We organize it following a framework based on the hierarchical model of succession and ecological filtering theory. This review shows that our knowledge is mostly derived from studies in Neotropical forests regenerating after abandonment of shifting cultivation or pasture systems. Vegetation is the ecological component assessed most often. Little is known regarding how the recovery of belowground processes and microbiota communities is affected by previous land-use history. In published studies, land-use history has been mostly characterized by type, without discrimination of intensity, extent, duration or frequency. We compile and discuss the metrics used to describe land-use history, aiming to facilitate future studies. The literature shows that (i) species availability to succession is affected by transformations in the landscape that affect dispersal, and by management practices and seed predation, which affect the composition and diversity of propagules on site. Once a species successfully reaches an abandoned field, its establishment and performance are dependent on resistance to management practices, tolerance to (modified) soil conditions, herbivory, competition with weeds and invasive species, and facilitation by remnant trees. (ii) Structural and compositional divergences at early stages of succession remain for decades, suggesting that early communities play an important role in governing further ecosystem functioning and processes during succession. Management interventions at early stages could help enhance recovery rates and manipulate successional pathways. (iii) The combination of local and landscape conditions defines the limitations to succession and therefore the potential for natural regeneration to restore ecosystem properties effectively. The knowledge summarized here could enable the identification of conditions in which natural regeneration could efficiently promote forest restoration, and where specific management practices are required to foster succession. Finally, characterization of the landscape context and previous land-use history is essential to understand the limitations to succession and therefore to define cost-effective restoration strategies. Advancing knowledge on these two aspects is key for finding generalizable relations that will increase the predictability of succession and the efficiency of forest restoration under different landscape contexts.


Assuntos
Ecossistema , Florestas , Humanos , Espécies Introduzidas , Solo , Árvores , Clima Tropical
6.
Glob Chang Biol ; 26(11): 6457-6473, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902090

RESUMO

The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.


Assuntos
Kelp , Alaska , California , Ecossistema , Florestas , Humanos , México
8.
Sci Total Environ ; 747: 141177, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795793

RESUMO

Drylands are experiencing an overall increase in aridity that is predicted to intensify in the future due to climate change. This may cause changes in the structure and functioning of dryland ecosystems, affecting ecosystem services and human well-being. Therefore, detecting early signs of ecosystem change before irreversible damage takes place is important. Thus, here we used a space-for-time substitution approach to study the response of the plant community to aridity in a Tropical dry forest (Caatinga, Brazil), and infer potential consequences of climate change. We assessed plant functional structure using the community weighted mean (CWM) and functional diversity, measured through functional dispersion (FDis), along a 700 km climatic gradient. We studied 13 functional traits, reflecting strategies associated with establishment, defense, regeneration, and dispersal of the most abundant 48 plant species in 113 sampling sites. Spearman correlations were used to test the relation between aridity and single-trait functional metrics. Aridity was a major environmental filter of the plant community functional structure. We found a higher abundance of species with deciduous leaves, zoochorous dispersal, fleshy fruits, chemical defense exudation and spinescence, and crassulacean acid metabolism towards more arid sites, at the expense of species with evergreen and thicker leaves, autochory dispersal, and shrub growth-form. The FDis of leaf type and thickness decreased with aridity, whereas FDis of fruit type, photosynthetic pathway, and defense strategies increased. Our findings provide functional indicators to early detect climate change impacts on Caatinga structure and functioning, to timely adopt preventive measures (e.g. conservation of forest remnants) and restoration actions (e.g. introduction of species with specific functional traits) in this threatened and unique ecosystem.


Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Humanos , Plantas , Clima Tropical
9.
New Phytol ; 228(4): 1256-1268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496591

RESUMO

Variations in crown forms promote canopy space-use and productivity in mixed-species forests. However, we have a limited understanding on how this response is mediated by changes in within-tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity-productivity relationships (DPRs) in the oldest tropical tree diversity experiment. We conducted whole-tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure. Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree-size effects and neighbourhood-mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root-to-shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood. Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.


Assuntos
Biodiversidade , Árvores , Biomassa , Florestas , Clima Tropical
10.
Sci Total Environ ; 738: 139453, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531582

RESUMO

This study aimed to assess the most affected traits related to microbial ecophysiology and activity and investigate its relationships with environmental drivers in mine tailings spilled from the Fundão dam at disturbed sites across Gualaxo do Norte river, Minas Gerais, Brazil. The mine tailings are characterized by increased pH value, silt percentage, and bulk density, while clay percentage, organic carbon (Corg), total nitrogen (Nt), and moisture contents are reduced. Microbial biomass, enzymatic activities (arylsulfatase, ß-1,4-glucosidase, acid and alkaline phosphatases), and the total microbial activity potential (FDA hydrolysis) were generally lower in tailings compared to undisturbed reference soil (Und). Enzyme-based indexes (GMea, WMean, and IBRv2) showed microbial communities with significantly lower degradative efficacy in the tailings than Und in all sites (R2 ≥ 0.94, p < 0.001). Non-metric multidimensional scaling and distance-based redundancy analysis revealed that microbial communities exhibited significant differentiation (R2 adjusted = 0.73, p = 0.0001) between mine tailings and Und over the different studied sites, which was strongly influenced by changes on physicochemical properties (pH, Corg and Nt contents, the predominance of small-sized particles of silt, and bulk density) and the presence of Se, Cr, Fe, and Ni, even at low concentrations. Our study suggests that the physicochemical properties and the presence of low bioavailable concentrations of heavy metals in dam tailings promote shifts on microbial communities through reductions in the C storage and biogeochemical cycling of nutrients by these communities compared to those in undisturbed reference soils surrounding and, therefore, has negative implications for the ecosystem functioning.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Colapso Estrutural , Brasil , Solo
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190116, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983328

RESUMO

Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Recifes de Corais , Florestas , Clima Tropical
12.
Conserv Biol ; 34(4): 977-987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31762059

RESUMO

The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.


Efectos de Borde sobre las Cascadas Tróficas en los Bosques Tropicales Resumen Los efectos en cascada de la pérdida de la biodiversidad sobre el funcionamiento ecosistémico de los bosques se ha vuelto más evidente. A pesar de ésto, no se ha establecido cómo los efectos de borde moldean estos procesos. Evaluamos cómo los efectos de borde alteran las poblaciones de artrópodos y la fuerza de cualquier cascada trófica resultante sobre la tasa de herbivoría en los bosques tropicales de Brasil. Establecimos siete pares de sitios interiores y en el borde del bosque. Cada sitio tuvo un lote de encierro de vertebrados, uno procesal (un marco de trabajo de encierro con muros abiertos) y uno de control (total de 42 lotes). Los fragmentos de bosque estuvieron rodeados por potreros. Los artrópodos del sotobosque y el daño a las hojas fueron muestreados cada cuatro semanas durante once meses. Usamos el análisis de vía para determinar la fuerza de las cascadas tróficas en los sitios interiores y los del borde. En los encierros ubicados al interior del bosque la abundancia de artrópodos depredadores y herbívoros incrementó en un 326% y 180% respectivamente (comparada con los lotes de control) y hubo efectos relevantes de cascada sobre la herbivoría. Los invertebrados habitantes del borde respondieron débilmente al encierro y no hubo evidencia de la cascada trófica. Nuestros resultados sugieren que la comunidad de vertebrados en los bordes del bosque controla las densidades de invertebrados en un grado menor de lo que lo hace al interior del bosque. Las áreas del borde pueden mantener comunidades de vertebrados con un contingente menor de insectívoros. Ésto permite que los artrópodos florezcan y explica indirectamente los niveles más altos de daño a las plantas en estos sitios. El incremento de las tasas de herbivoría puede tener consecuencias importantes para la composición de la comunidad y para la productividad primaria, así como para los efectos cascada y el ciclo de nutrientes. Si intercalamos los fragmentos de bosque con agrobosques, en lugar de hacerlo con potreros, los efectos abióticos del borde pueden reducirse y se puede prevenir que penetren profundamente en el bosque. Esto aseguraría que una mayor proporción de bosque permanezca como habitable para las especies sensibles y podría ayudar a retener las funciones del ecosistema en las zonas de borde.


Assuntos
Ecossistema , Floresta Úmida , Animais , Biodiversidade , Brasil , Conservação dos Recursos Naturais , Florestas , Árvores
13.
Ann Bot ; 125(3): 391-398, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31678986

RESUMO

BACKGROUND: Alternative organism designs (i.e. the existence of distinct combinations of traits leading to the same function or performance) are a widespread phenomenon in nature and are considered an important mechanism driving the evolution and maintenance of species trait diversity. However, alternative designs are rarely considered when investigating assembly rules and species effects on ecosystem functioning, assuming that single trait trade-offs linearly affect species fitness and niche differentiation. SCOPE: Here, we first review the concept of alternative designs, and the empirical evidence in plants indicating the importance of the complex effects of multiple traits on fitness. We then discuss how the potential decoupling of single traits from performance and function of species can compromise our ability to detect the mechanisms responsible for species coexistence and the effects of species on ecosystems. Placing traits in the continuum of organism integration level (i.e. traits hierarchically structured ranging from organ-level traits to whole-organism traits) can help in choosing traits more directly related to performance and function. CONCLUSIONS: We conclude that alternative designs have important implications for the resulting trait patterning expected from different assembly processes. For instance, when only single trade-offs are considered, environmental filtering is expected to result in decreased functional diversity. Alternatively, it may result in increased functional diversity as an outcome of alternative strategies providing different solutions to local conditions and thus supporting coexistence. Additionally, alternative designs can result in higher stability of ecosystem functioning as species filtering due to environmental changes would not result in directional changes in (effect) trait values. Assessing the combined effects of multiple plant traits and their implications for plant functioning and functions will improve our mechanistic inferences about the functional significance of community trait patterning.


Assuntos
Ecossistema , Plantas , Biodiversidade , Fenótipo , Fenômenos Fisiológicos Vegetais
14.
Glob Chang Biol ; 25(12): 4257-4272, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486578

RESUMO

There is increasing evidence that mixed-species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity-productivity relationships and diversity-stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one-, two-, three- and five-species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood- and community-level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree-tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%-30% in two- and three-species mixtures and 50% in five-species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño-related drought. Overall, positive diversity-productivity and diversity-stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed-species forests may provide both high levels and high stability of production.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Panamá , Clima Tropical
15.
Braz. j. biol ; Braz. j. biol;78(3): 517-524, Aug. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951565

RESUMO

Abstract Functional diversity is increasingly pointed as a useful approach to reach Biological Conservation goals. Here, we provide an overview of the functional diversity approach status in the Biological Conservation field. We sought for peer-reviewed papers published over a period of twenty years (from 1994 to 2014). First we used the general topic "functional diversity" and then refined our search using the key-word "conservation". We have identified the conservation strategies addressed, the organism studied, and the continent of study site in each paper. Thirteen classes of conservation strategies were identified. Plants were the most commonly studied organism group and most study-sites were located in Europe. The functional diversity approach was introduced in the Biological Conservation field in the early 2000's and its inclusion in conservation strategies is broadly advised. However, the number of papers that operationalise such inclusion by developing models and systems is still low. Functional diversity responds differently and eventually better than other measures to changes in land use and management, which suggests that this approach can potentially better predict the impacts. More studies are needed to corroborate this hypothesis. We pointed out knowledge gaps regarding identification of the responses for functional diversity about urban impacts and in research on the level of management intensity of land needed to maintain functional diversity. We recommend the use of functional diversity measures to find ecological indicators. Future studies should focus on the development of functional diversity measures of other taxa beyond plants as well as test hypothesis in tropical ecosystems.


Resumo A diversidade funcional é crescentemente apontada como uma abordagem útil para alcançar os objetivos da Conservação Biológica. Neste artigo, nós mostramos uma visão geral do status desta abordagem no campo da Conservação Biológica. Nós buscamos por artigos revisados por pares publicados ao longo de vinte anos (desde 1994 até 2014) usando, primeiramente, o tópico geral "functional diversity" e em seguida, refinamos a pesquisa com a palavra-chave "conservation". Identificamos a estratégia de conservação abordada, o organismo estudado e o continente da área de estudo de cada artigo. Treze classes de estratégias de conservação foram identificadas. As plantas foram o grupo de organismos mais amplamente estudado e a maior parte das áreas de estudo estavam localizadas no continente europeu. A abordagem da diversidade funcional entrou no campo da Conservação Biológica no início dos anos 2000 e sua inclusão nas estratégias de conservação é amplamente recomendada. Entretanto, o número de artigos que operacionalizam tal inclusão ainda é pequeno. A diversidade funcional responde diferentemente e, eventualmente, melhor do que as outras medidas às mudanças no uso da terra e no manejo, sugerindo que essa abordagem pode potencialmente prever melhor os impactos. Mais estudos são necessários para corroborar esta hipótese. Destacamos lacunas de conhecimento sobre a identificação das respostas da diversidade funcional aos impactos urbanos e sobre a busca pelo nível de intensidade de manejo da terra necessária para manter a diversidade funcional. Recomendamos o uso de medidas de diversidade funcional para encontrar indicadores ecológicos. Estudos futuros devem focar no desenvolvimento de medidas de diversidade funcional de outros taxa, além das plantas bem como testar hipóteses em ecossistemas tropicais.


Assuntos
Pesquisa , Ecossistema , Conservação dos Recursos Naturais/métodos , Internacionalidade , Ecologia/métodos , Plantas , Biodiversidade , Europa (Continente)
16.
Oecologia ; 188(4): 1121-1132, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30328529

RESUMO

Biodiversity and ecosystem functioning (BEF) research advocates that biodiversity loss has a drastic alteration on ecosystem functioning. However, studies have barely investigated how the evolutionary dependence of species traits affects EF. Here, we developed an integrated approach combining functional (FD) and phylogenetic diversity (PD) into a single space to disentangle the effects of diversity on leaf decomposition. We conducted an experiment manipulating plant leaves into litterbags containing four species (from a pool of 27) combined in four different treatments represented by low or high FD and PD; these treatments present different scenarios of trait evolution and, therefore, a treatment with high FD and low PD, for instance, mimics a community assembled by divergent trait evolution of close relatives. We found that leaf decomposition was 30% slower in pools with high FD and PD. We show species pool with higher FD and PD have non-additive effects on decomposition, which means there is a negative effect of mixtures combining species with great functional and evolutionary differences. In addition, interactive effects of PD and FD were more important to leaf decomposition than their isolated effects. Our results suggest that PD and FD have interactive effects on decomposition and represent different axes of ecosystem variation, indicating we should avoid using phylogenies as a proxy for functional diversity. We argue that future BEF experiments may alter their design by considering a multifaceted scenario investigating community effects on ecosystem functioning, and idiosyncratic effects of key traits which may determine community assembly and ecosystem processes.


Assuntos
Biodiversidade , Ecossistema , Fenótipo , Filogenia , Folhas de Planta
17.
Rev. peru. biol. (Impr.) ; 25(3): 343-348, jul.-set. 2018. ilus
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1094332

RESUMO

Several anthropogenic pressures are threatening biodiversity and may increase in the next years, altering eco- logical processes and ecosystem services. Biological collections offer a rich source of information to develop studies of functional ecology and biodiversity conservation. Key information related to morphology, physiology and life history could be obtained through functional traits provided by specimens in biological collections. Additionally, museum collections present a great potential for document changes of habitat disturbance, using response/effect framework, functional diversity measures, and fluctuating asymmetry approaches. Despite limitations of specimens in data such as abundance, imprecisions in specimen´s georeferencing, errors in taxonomic identification and the poor preservation state of some specimens, biological collections contain vast data banks, which could be useful in the contribution of key information for land use management and conservation planning.


Varias presiones antropogénicas amenazan la biodiversidad y pueden aumentar en los próximos años, alterando procesos ecológicos y servicios ecosistémicos. Las colecciones biológicas ofrecen una abundante fuente de información para desarrollar estudios de ecología funcional y conservación de la biodiversidad. Información clave relacionada con morfología, fisiología e historia de vida puede ser obtenida a través de los rasgos fun- cionales proporcionados por los ejemplares de colecciones biológicas. Adicionalmente, las colecciones de los museos presentan un gran potencial para documentar cambios en la perturbación del hábitat usando el marco de efecto/respuesta, las medidas de diversidad funcional, y el enfoque de asimetría fluctuante. A pesar de las limitaciones de los especímenes en datos como la abundancia, imprecisiones en la georreferenciación de los especímenes, errores en la identificación taxonómica y el mal estado de conservación de algunos ejemplares, las colecciones biológicas contienen enormes bancos de datos que podrían ser útiles en el aporte de información clave para el manejo del uso del suelo y los planes de conservación.

18.
J Anim Ecol ; 87(5): 1465-1474, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928758

RESUMO

Understanding how biodiversity loss influences plant litter decomposition-that is, the biologically mediated conversion of coarse to fine particulate organic matter-is crucial to predict changes in the functioning of many stream ecosystems, where detrital food webs are dominant. Rates of litter decomposition are influenced by detritivore diversity, but the mechanisms behind this relationship are uncertain. As differences in detritivore body size are a major determinant of interspecific interactions, they should be key for predicting effects of detritivore diversity on decomposition. To explore this question, we manipulated detritivore diversity and body size simultaneously in a microcosm experiment using two small (Leuctra geniculata and Lepidostoma hirtum) and two large detritivore species (Sericostoma pyrenaicum and Echinogammarus berilloni) in all possible 1-, 2- and 4-species combinations, and litter discs of Alnus glutinosa. We expected that larger species would facilitate smaller species through the production of smaller litter fragments, resulting in faster decomposition and greater growth of smaller species in polycultures containing species of different body size. To examine this hypothesis, we used a set of "diversity-interaction" models that explored how decomposition was affected by different interspecific interactions and the role of body size, and quantified the magnitude of such effect through ratios of decomposition rates and detritivore growth between polycultures and monocultures. We found a clear positive effect of detritivore diversity on decomposition, which was mainly explained by facilitation and niche partitioning. Facilitation of small animals by larger ones was evidenced by a 12% increase in decomposition rates in polycultures compared to monocultures and the higher growth (20%) of small species, which partly fed on fine particulate organic matter produced by larger animals. When the large species were together in polycultures, decomposition was enhanced by 19%, but there were no changes in growth; niche partitioning was a plausible mechanism behind the increase in decomposition rates, as both species fed on different parts of litter discs, only one species being able to eat less palatable parts. Our study demonstrates that interspecific differences in body size should be taken into account in diversity-decomposition studies. Future studies should also consider differences in species' vulnerability to extinction depending on body size and how this might affect ecosystem functioning in different scenarios of detritivore diversity and more complex food webs.


Assuntos
Ecossistema , Folhas de Planta , Animais , Biodiversidade , Cadeia Alimentar , Rios
19.
Glob Chang Biol ; 24(7): 3170-3186, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29485732

RESUMO

Warming is among the major drivers of changes in biotic interactions and, in turn, ecosystem functioning. The decomposition process occurs in a chain of facilitative interactions between detritivores and microorganisms. It remains unclear, however, what effect warming may have on the interrelations between detritivores and microorganisms, and the consequences for the functioning of natural freshwater ecosystems. To address these gaps, we performed a field experiment using tank bromeliads and their associated aquatic fauna. We manipulated the presence of bacteria and detritivorous macroinvertebrates (control, "bacteria," and "bacteria + macroinvertebrates") under ambient and warming scenarios, and analyzed the effects on the microorganisms and ecosystem functioning (detritus mass loss, colored dissolved organic matter, and nitrogen flux). We applied antibiotic solution to eliminate or reduce bacteria from control bromeliads. After 60 days incubation, bacterial density was higher in the presence than in the absence of macroinvertebrates. In the absence of macroinvertebrates, temperature did not influence bacterial density. However, in the presence of macroinvertebrates, bacterial density decreased by 54% with warming. The magnitude of the effects of organisms on ecosystem functioning was higher in the combined presence of bacteria and macroinvertebrates. However, warming reduced the overall positive effects of detritivores on bacterial density, which in turn, cascaded down to ecosystem functioning by decreasing decomposition and nitrogen flux. These results show the existence of facilitative mechanisms between bacteria and detritivores in the decomposition process, which might collapse due to warming. Detritivores seem to contribute to nutrient cycling as they facilitate bacterial populations, probably by increasing nutrient input (feces) in the ecosystem. However, increased temperature mitigated these beneficial effects. Our results add to a growing research body that shows that warming can affect the structure of aquatic communities, and highlight the importance of considering the interactive effects between facilitation and climatic drivers on the functioning of freshwater ecosystems.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Água Doce , Temperatura Alta , Animais , Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Invertebrados/metabolismo , Nitrogênio/metabolismo , Dinâmica Populacional
20.
Ecol Lett ; 21(1): 72-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098798

RESUMO

Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.


Assuntos
Biodiversidade , Ecossistema , Cadeia Alimentar , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA