Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.406
Filtrar
1.
Antibiotics (Basel) ; 13(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061282

RESUMO

More than 70% of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of "last-line" antimicrobial therapies for the treatment of multi-resistant bacteria. These antibiotics include Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin), and Carbapenem (Meropenem). However, due to the toxicity of these types of molecules, it is necessary to develop new rapid methodologies to be used in Therapeutic Drug Monitoring (TDM). TDM could improve patient outcomes and reduce healthcare costs by enabling a favorable clinical outcome. In this way, personalized antibiotic therapy emerges as a viable option, offering optimal dosing for each patient according to pharmacokinetic (PK) and pharmacodynamic (PD) parameters. Various techniques are used for this monitoring, including high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and immunoassays. The objective of this study is the development and characterization by ELISA of specific polyclonal antibodies for the recognition of the antibiotics Vancomycin (glycopeptide), Colistin (polymyxin), Daptomycin (lipopeptide), and Meropenem (carbapenem) for future applications in the monitoring of these antibiotics in different fluids, such as human plasma. The developed antibodies are capable of recognizing the antibiotic molecules with good detectability, showing an IC50 of 0.05 nM for Vancomycin, 7.56 nM for Colistin, 183.6 nM for Meropenem, and 13.82 nM for Daptomycin. These antibodies offer a promising tool for the precise and effective therapeutic monitoring of these critical antibiotics, potentially enhancing treatment efficacy and patient safety.

2.
Methods Mol Biol ; 2827: 323-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985280

RESUMO

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.


Assuntos
Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Ensaio de Imunoadsorção Enzimática/métodos , DNA de Plantas/genética , Cocos/genética , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos
3.
Braz J Microbiol ; 55(3): 2683-2691, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38874744

RESUMO

We conducted a development and standardization of an IgG ELISA assay for serological detection of human orthohantavirus infections using the recombinant antigen rLECH13 produced in bacterial and derived from the LECHV. The evaluation and standardization were carried out by analyzing serum samples from a total of 50 patients with confirmed Hantavirus Pulmonary Syndrome (HPS) diagnosis through the reference technique, 50 negative sera, and 53 patients with other medical conditions. The data from the assay analysis showed a diagnostic sensitivity value of 95% and a diagnostic specificity of 80%. The high sensitivity of this novel assay leads us to conclude that rLECH13 is a feasible option for use in the immunodiagnostic of orthohantavirus infection. Additionally, it is crucial to have an antigen that can be produced under conditions that do not require highly complex laboratories. Furthermore, the new assay is cost-effective, reproducible, and demonstrates excellent performance.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Infecções por Hantavirus , Orthohantavírus , Sensibilidade e Especificidade , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Orthohantavírus/imunologia , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , Argentina , Infecções por Hantavirus/diagnóstico , Anticorpos Antivirais/sangue , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Imunoglobulina G/sangue , Antígenos Virais
4.
J Med Microbiol ; 73(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935078

RESUMO

Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.


Assuntos
Galinhas , Ensaio de Imunoadsorção Enzimática , Orthoreovirus Aviário , Doenças das Aves Domésticas , Proteínas Recombinantes , Infecções por Reoviridae , Animais , Orthoreovirus Aviário/imunologia , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/diagnóstico , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Proteínas Recombinantes/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas Virais/imunologia , Proteínas Virais/genética
5.
Animals (Basel) ; 14(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38929363

RESUMO

Streptococcosis caused by Streptococcus agalactiae (S. agalactiae) is a major bacterial disease affecting the production of Nile tilapia (Oreochromis niloticus L.), causing significant economic losses due to mortality in the growing phase. Vaccination is the most effective method for preventing streptococcosis on Nile tilapia farms. In Brazil, the major tilapia-producing regions have long production cycles (6-10 months) and harvest tilapias weighing over 900 g for fillet production. Thus, data on the duration of the humoral immune response and protection in farmed tilapia have not been reported or are poorly described. Furthermore, the efficiency of serological testing for the long-term monitoring of immune responses induced by vaccination against S. agalactiae has never been addressed. This study evaluated the duration of protection and humoral immune response induced in Nile tilapia vaccinated against S. agalactiae until 300 days post-vaccination (dpv). The immunization trial was composed of two groups: vaccinated (Vac), vaccinated intraperitoneally with a commercial vaccine, and unvaccinated (NonVac) group, injected fish with sterile saline solution. At 15, 30, 150, 180, 210, and 300 dpv, blood sampling was conducted to detect anti-S. agalactiae IgM antibodies using indirect Enzyme-Linked Immunosorbent Assay (ELISA), and the fish were challenged with pathogenic S. agalactiae to determine the duration of vaccine protection through relative percentage survival (RPS). Spearman's rank correlation was performed between the ELISA optical density (OD) of vaccinated tilapia and the duration of vaccine protection (RPS). The mean cumulative mortality in NonVac and Vac groups ranged from 65 to 90% and less than 35%, respectively. The average RPS was 71, 93, 94, 70, 86, and 67% at 15, 30, 150, 180, 210, and 300 dpv, respectively. RPS revealed that the vaccine provided protection from 15 to 300 dpv. The specific anti-S. agalactiae IgM antibody levels were significantly higher in the Vac group than that non-Vac group up to 180 dpv. The vaccinated fish exhibited significant protection for up to 10 months after vaccination. There was a positive correlation between the antibody response and RPS. This study revealed that a single dose of commercial vaccine administered to Nile tilapia can confer long-term protection against S. agalactiae and that indirect ELISA can monitor the duration of the humoral immune response for up to six months following vaccination. Finally, vaccine protection over six months can be associated with other components of the fish immune system beyond the humoral immune response by IgM antibodies.

6.
Braz J Microbiol ; 55(3): 2279-2284, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38805148

RESUMO

Leptospirosis is a globally distributed infectious disease caused by pathogenic spirochetes of the Leptospira genus, often overlooked. It is estimated that the disease affects approximately one million people annually, resulting in more than 58,900 deaths. The gold standard for serodiagnosis of leptospirosis is the Microscopic Agglutination Test (MAT). However, the limitations of this technique necessitate the exploration of alternative diagnostic methods. In this study, we evaluated the ErpY-like recombinant protein (rErpY-like) in the development of a serologic diagnostic assay for human leptospirosis. Eighty-six human sera samples, characterized by MAT, underwent evaluation through indirect IgM-ELISA and IgG-ELISA. The sensitivity and specificity values obtained from IgM-ELISA were 60% and 76%, respectively, while those from IgG-ELISA were 96.4% and 100%, respectively. The use of the rErpY-like protein in both IgM-ELISA and IgG-ELISA proves to be a sensitive and specific method for antibody detection. This could potentially serve as a valuable alternative tool in the diagnosis of human leptospirosis.


Assuntos
Anticorpos Antibacterianos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M , Leptospira , Leptospirose , Sensibilidade e Especificidade , Testes Sorológicos , Leptospirose/diagnóstico , Leptospirose/imunologia , Leptospirose/microbiologia , Leptospirose/sangue , Humanos , Anticorpos Antibacterianos/sangue , Imunoglobulina M/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Leptospira/imunologia , Testes Sorológicos/métodos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Antígenos de Bactérias/imunologia
7.
Vet Parasitol Reg Stud Reports ; 51: 101032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772648

RESUMO

Toxoplasma gondii is described as a potential cause of abortion in goats and as a threat to public health. To estimate the prevalence of goats infected by T. gondii, in different cities in the Espírito Santo State, and to identify possible risk factors for infection a serological study was conducted. A total of 146 goat serum samples from the cities of Cariacica, Serra and Vila Velha were analyzed. The presence of IgG Class Immunoglobulins was serologically evaluated by Immunofluorescence antibody test (IFAT) and by Enzyme-linked Immunosorbent Assay (ELISA). The seroprevalence of anti-T. gondii was 46.6% (68/146) in both techniques and the same samples got the same results in both techniques. Among the analyzed sera, 70.6% (48/68) exhibited high-avidity IgG antibodies, and 29.4% (20/68) exhibited low-avidity IgG antibodies, suggesting that the infection was chronic in the infected animals. Female sex, age group over two years old, water from the public supply system, storage of food and supplies in an open and unprotected place, and the presence of a domestic cat on the property were identified as risk factors for T. gondii infection in goats. The state of Espirito Santo has a high frequency of infected goats, and this is the first research on caprine toxoplasmosis seroepidemiology in that region.


Assuntos
Anticorpos Antiprotozoários , Doenças das Cabras , Cabras , Imunoglobulina G , Toxoplasma , Toxoplasmose Animal , Animais , Cabras/parasitologia , Estudos Soroepidemiológicos , Brasil/epidemiologia , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/parasitologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Fatores de Risco , Toxoplasma/imunologia , Feminino , Masculino , Anticorpos Antiprotozoários/sangue , Imunoglobulina G/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Prevalência
8.
Heliyon ; 10(9): e29938, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707409

RESUMO

Lateral flow immunoassays (LFIA) for antibody detection represent cost-effective and user-friendly tools for serology assessment. This study evaluated a new LFIA prototype developed with a recombinant chimeric antigen from the spike/S and nucleocapsid/N proteins to detect anti-SARS-CoV-2 IgG antibodies. The evaluation of LFIA sensitivity and specificity used 811 serum samples from 349 hospitalized, SARS-CoV-2 RT-qPCR positive COVID-19 patients, collected at different time points and 193 serum samples from healthy controls. The agreement between ELISA results with the S/N chimeric antigen and LFIA results was calculated. The LFIA prototype for SARS-CoV-2 using the chimeric S/N protein demonstrated 85 % sensitivity on the first week post symptoms onset, reaching 94 % in samples collected at the fourth week of disease. The agreement between LFIA and ELISA with the same antigen was 92.7 %, 0.827 kappa Cohen value (95 % CI [0.765-0.889]). Further improvements are needed to standardize the prototype for whole blood use. The inclusion of the novel chimeric S + N antigen in the COVID-19 IgG antibody LFIA demonstrated optimal agreement with results from a comparable ELISA, highlighting the prototype's potential for accurate large-scale serologic assessments in the field in a rapid and user-friendly format.

9.
Antibodies (Basel) ; 13(2)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804309

RESUMO

SARS-CoV-2 vaccines have contributed to attenuating the burden of the COVID-19 pandemic by promoting the development of effective immune responses, thus reducing the spread and severity of the pandemic. A clinical trial with the Sputnik-V vaccine was conducted in Venezuela from December 2020 to July 2021. The aim of this study was to explore the antibody reactivity of vaccinated individuals towards different regions of the spike protein (S). Neutralizing antibody (NAb) activity was assessed using a commercial surrogate assay, detecting NAbs against the receptor-binding domain (RBD), and a plaque reduction neutralization test. NAb levels were correlated with the reactivity of the antibodies to the spike regions over time. The presence of Abs against nucleoprotein was also determined to rule out the effect of exposure to the virus during the clinical trial in the serological response. A high serological reactivity was observed to S and specifically to S1 and the RBD. S2, although recognized with lower intensity by vaccinated individuals, was the subunit exhibiting the highest cross-reactivity in prepandemic sera. This study is in agreement with the high efficacy reported for the Sputnik V vaccine and shows that this vaccine is able to induce an immunity lasting for at least 180 days. The dissection of the Ab reactivity to different regions of S allowed us to identify the relevance of epitopes outside the RBD that are able to induce NAbs. This research may contribute to the understanding of vaccine immunity against SARS-CoV-2, which could contribute to the design of future vaccine strategies.

10.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792746

RESUMO

Diagnosing canine visceral leishmaniasis (CVL) in Brazil faces challenges due to the limitations regarding the sensitivity and specificity of the current diagnostic protocol. Therefore, it is urgent to map new antigens or enhance the existing ones for future diagnostic techniques. Immunoinformatic tools are promising in the identification of new potential epitopes or antigen candidates. In this study, we evaluated peptides selected by epitope prediction for CVL serodiagnosis in ELISA assays. Ten B-cell epitopes were immunogenic in silico, but two peptides (peptides No. 45 and No. 48) showed the best performance in vitro. The selected peptides, both individually and in combination, were highly diagnostically accurate, with sensitivities ranging from 86.4% to 100% and with a specificity of approximately 90%. We observed that the combination of peptides showed better performance when compared to peptide alone, by detecting all asymptomatic dogs, showing lower cross-reactivity in sera from dogs with other canine infections, and did not detect vaccinated animals. Moreover, our data indicate the potential use of immunoinformatic tools associated with ELISA assays for the selection and evaluation of potential new targets, such as peptides, applied to the diagnosis of CVL.

11.
Biologicals ; 86: 101769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38759304

RESUMO

This study focuses on the development and initial assessment of an indirect IgG enzyme-linked immunosorbent assay (ELISA) specifically designed to detect of anti-SARS-CoV-2 antibodies. The unique aspect of this ELISA method lies in its utilization of a recombinant nucleocapsid (N) antigen, produced through baculovirus expression in insect cells. Our analysis involved 292 RT-qPCR confirmed positive serum samples and 54 pre-pandemic healthy controls. The process encompassed cloning, expression, and purification of the SARS-CoV-2 N gene in insect cells, with the resulted purified protein employed in our ELISA tests. Statistical analysis yielded an Area Under the Curve of 0.979, and the optimized cut-off exhibited 92 % sensitivity and 94 % specificity. These results highlight the ELISA's potential for robust and reliable serological detection of SARS-CoV-2 antibodies. Further assessments, including a larger panel size, reproducibility tests, and application in diverse populations, could enhance its utility as a valuable biotechnological solution for diseases surveillance.


Assuntos
Anticorpos Antivirais , Baculoviridae , COVID-19 , Ensaio de Imunoadsorção Enzimática , Proteínas Recombinantes , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Baculoviridae/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/imunologia , Animais , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Teste Sorológico para COVID-19/métodos , Células Sf9 , Antígenos Virais/imunologia , Antígenos Virais/genética , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/genética , Sensibilidade e Especificidade , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fosfoproteínas/imunologia , Fosfoproteínas/genética
12.
Parasit Vectors ; 17(1): 172, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566124

RESUMO

BACKGROUND: Antigen detection in Taenia solium cysticercosis confirms viable infection in the intermediate host (either pig or human). The reference B158/B60 monoclonal antibody (mAb)-based Ag-enzyme-linked immunosorbent assay (ELISA) has acceptable levels of sensitivity and specificity in human neurocysticercosis with multiple brain cysts, although its sensitivity is lower in cases with single brain cysts, whereas in porcine cysticercosis the assay specificity is affected by its frequent cross-reaction with Taenia hydatigena, another common cestode found in pigs. Our group has produced 21 anti-T. solium mAbs reacting against antigens of the whole cyst, vesicular fluid, and secretory/excretory products, identifying TsW8/TsW5 as the most promising pair of mAbs for an Ag-ELISA. METHODS: We report the use of the TsW8/TsW5 Ag-ELISA to measure cysticercus antigen levels [expressed as optical density (OD) values] in two panels of sera collected from day 0 (baseline) to day 90 postinfection (PI) from pigs experimentally infected with T. solium (n = 26) and T. hydatigena (n = 12). At baseline and on days 28 and 90 PI, we used Bland-Altman (BA) analysis and Lin's concordance correlation coefficients (CCC) to determine the concordance between the TsW8/TsW5 and the B158/B60 Ag-ELISA. RESULTS: The TsW8/TsW5 Ag-ELISA was able to efficiently measure circulating antigen levels in T. solium-infected pigs, similar to that obtained with the B158/B60 Ag-ELISA. Almost all paired log-OD differences between assays were within the limits of agreement (LoA) in the BA analysis at baseline and on days 28 and 90 PI (92.3%, 100%, and 100%, respectively), and a high concordance of log-ODs between assays was also found (Lin's CCC: 0.69, 0.92, and 0.96, respectively, all P < 0.001). In pigs infected with T. hydatigena, almost all paired log-OD differences were within the LoA in the BA analysis, whereas the concordance of log-ODs between assays was low at baseline (Lin's CCC: 0.24) but increased on days 28 and 90 PI (Lins' CCC: 0.88 and 0.98, P < 0.001). CONCLUSIONS/SIGNIFICANCE: The TsW8/TsW5 Ag-ELISA recognizes antigens in pigs with T. solium cysticercosis and is highly concordant with the B158/B60 Ag-ELISA. However, its diagnostic use is hampered by cross-reactions with T. hydatigena, as in other mAb-based Ag-ELISAs.


Assuntos
Cisticercose , Cistos , Doenças dos Suínos , Taenia solium , Taenia , Animais , Humanos , Suínos , Cysticercus , Anticorpos Monoclonais , Doenças dos Suínos/diagnóstico , Cisticercose/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Antígenos , Antígenos de Helmintos , Anticorpos Anti-Helmínticos
13.
Vector Borne Zoonotic Dis ; 24(9): 591-596, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38651633

RESUMO

Background: The aim of the present study was to describe the presence of co-infection by Toxoplasma gondii and Neospora caninum in goats reared in extensive systems from Mexico. Materials and Methods: A cross-sectional study was conducted to determine the frequency of T. gondii and N. caninum, by detecting antibodies to each parasite by mean commercial ELISA kits. A total of 176 blood samples were randomly collected from mature females reared in extensive system herds from 20 municipalities of state of Guanajuato, Mexico. Results: The general seroprevalence was 23.9 and 21.0% for T. gondii and N. caninum, respectively, while co-infection rate was 3.6%. For geographic and environmental variables, no differences were observed among T. gondii and coinfection; however, it was observed that altitude, annual precipitation, annual average temperature, and rainy period showed significant differences with N. caninum seropositive goats. Conclusion: The seroprevalence of both parasites was appreciated in most of the studied herds. The present study is the first report of T. gondii and N. caninum co-infection in goats from extensive herds in Mexico.


Assuntos
Coccidiose , Coinfecção , Doenças das Cabras , Cabras , Neospora , Toxoplasma , Toxoplasmose Animal , Animais , Coccidiose/veterinária , Coccidiose/epidemiologia , Coccidiose/parasitologia , México/epidemiologia , Toxoplasma/imunologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/parasitologia , Estudos Soroepidemiológicos , Feminino , Estudos Transversais , Anticorpos Antiprotozoários/sangue
14.
Vet Res Commun ; 48(4): 2645-2650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38575801

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis (PTBC), a chronic infectious granulomatous enteritis of ruminants. The PTBC diagnosis with commercial ELISA has limitations in sensitivity and specificity, and its results depend on the state of progress of the disease. This research aimed to evaluate two different ELISAs: (a) an "in-house" ELISA with a sonicated antigen obtained from a MAP I47 strain, and (b) a commercial ELISA. In total, the evaluated sample consisted of 394 bovine serum samples from 12 farms in Argentina with high (5-9%) and low (≤ 0.05%) prevalence of PTBC. The evaluation of the new antigen (2.5 µg/mL) was against a 1:50 dilution of the M. phlei faced sera. The cut-off point, sensitivity, and specificity determinations of both techniques were by ROC curve analysis. The area under the curve for the I47 ELISA was 0.9 (CI 95%, 0.93-0.97). With a cut-off point of 8.8%, the sensitivity was 84.3% and the specificity 96.6%. The agreement between both techniques was 0.7 (CI 95%, 0.6-0.8). These results indicate a high discriminative capacity to differentiate positive and negative bovine sera of MAP infection with the I47 ELISA. This result would represent an advantage to dispense with the imported kit.


Assuntos
Doenças dos Bovinos , Ensaio de Imunoadsorção Enzimática , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Sensibilidade e Especificidade , Bovinos , Animais , Paratuberculose/diagnóstico , Paratuberculose/sangue , Paratuberculose/microbiologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Mycobacterium avium subsp. paratuberculosis/imunologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Testes Sorológicos/veterinária , Testes Sorológicos/métodos , Argentina
15.
Heliyon ; 10(8): e29329, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681627

RESUMO

Dengue is a significant disease transmitted by Aedes mosquitoes in the tropics and subtropics worldwide. The disease is caused by four virus (DENV) serotypes and is transmitted to humans by female Aedes aegypti mosquito bites infected with the virus and vertically to their progeny. Current strategies to control dengue transmission focus on the vector. In this study, we describe an indirect Enzyme-Linked Immunosorbent Assay (ELISA), using a monoclonal antibody against the non-structural dengue virus protein 1 (NS1), to detect DENV2 in Ae. aegypti eggs. The assay detects NS1 in eggs homogenates with 87.5% sensitivity and 75.0% specificity and it is proposed as a tool for the routine entomovirological surveillance of DENV 2 in field mosquito populations.

16.
PeerJ ; 12: e17117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500532

RESUMO

Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.


Assuntos
Mariposas , Humanos , Animais , Camundongos , Apolipoproteínas/química , Larva , Interações Hospedeiro-Patógeno , Mamíferos/metabolismo
17.
Heliyon ; 10(6): e27604, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545144

RESUMO

Cassava (Manihot esculenta Crantz) is a crop of global economic and food safety importance, used for human consumption and in various industrial applications. The genebank of the Genetic Resources Program of the Alliance of Bioversity International and CIAT currently holds the world's largest cassava collection, with 5965 in vitro accessions from 28 countries. Managing this extensive collection involves indexing quarantine pathogens as a phytosanitary certification requirement for safely distributing cassava germplasm. The study therefore aimed to optimize a quantitative diagnostic protocol to detect cassava common mosaic virus (CsCMV) using quantitative PCR (qPCR) as a better alternative to other molecular techniques. This was done through designing primers and a probe in the RdRP region of CsCMV, and optimizing the qPCR conditions of the diagnostic protocol using primer concentration assays, and reaction amplification conditions such as volume and reaction time. We also evaluated the qPCR protocol by comparing the results of 140 cassava accession evaluations using three diagnostic methodologies (DAS-ELISA, end-point PCR, and qPCR) for CsCMV. Our protocol established that qPCR technique analysis is ten-times more sensitive in detecting CsCMV compared to end-point PCR, showing a maximum detection level of 77.97 copies/µL of plasmid, with 76 min of reaction time. The comparison allowed us to verify the level of CsCMV detection through the techniques evaluated, concluding that qPCR was more sensitive and allowed the quantification of viral concentration. The optimized qPCR protocol will be used to accelerate diagnostic screening of cassava germplasm for the presence or absence of CsCMV to ensure safe movement and distribution of disease-free germplasm.

18.
Med Mycol ; 62(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38479779

RESUMO

Definitive diagnosis of histoplasmosis relies on culture and/or cytology/histopathology; however, these procedures have limited sensitivity and cultures are time-consuming. Antibodies detection by immunodiffusion has low sensitivity in immunocompromised individuals and uses histoplasmin (HMN), a crude antigenic extract, as reagent. Novel protein antigen candidates have been recently identified and produced by DNA-recombinant techniques to obtain standardized and specific reagents for diagnosing histoplasmosis. To compare the analytical performance of novel enzyme-linked immunosorbent assays (ELISAs) for antibodies testing for diagnosing histoplasmosis using different Histoplasma capsulatum antigens as reagents. The H. capsulatum 100 kDa protein (Hcp100), the M antigen and its immunoreactive fragment F1 were produced by DNA-recombinant techniques. Galactomannan was purified from both the yeast and mycelial cell walls (yGM and mGM, respectively). The analytical performance of the ELISA tests for the serological detection of antibodies against these antigens was evaluated and compared with those obtained using HMN as reagent. Antibodies detection by the Hcp100 ELISA demonstrated 90.0% sensitivity and 92.0% specificity, versus 43.3% sensitivity and 95.0% specificity of the M ELISA, 33.3% sensitivity and 84.0% specificity of the F1 ELISA, 96.7% sensitivity and 94.0% specificity of the yGM ELISA, 83.3% sensitivity and 88.0% specificity of the mGM ELISA, and 70.0% sensitivity and 86.0% specificity for the HMN ELISA. In summary, Hcp100 is proposed as the most promising candidate for the serodiagnosis of histoplasmosis. The primary immunoreactive element in HMN proved to be GM rather than the M antigen. Nevertheless, a higher incidence of cross-reactions was noted with GM compared to M.


Hcp100 is a promising serodiagnostic candidate for histoplasmosis, boasting high sensitivity and specificity. Notably, GM, rather than M antigen, emerged as the primary immunoreactive element in HMN, despite a higher incidence of cross-reactions with GM compared to M.


Assuntos
Histoplasmose , Humanos , Histoplasmose/diagnóstico , Histoplasmose/veterinária , Histoplasma/genética , Anticorpos Antifúngicos , Técnicas Imunoenzimáticas , Antígenos de Fungos , Anticorpos , Imunodifusão/veterinária , Saccharomyces cerevisiae , DNA
19.
Front Microbiol ; 15: 1348437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476951

RESUMO

Syphilis is a sexually transmitted infection (STI) caused by the spiral bacterium Treponema pallidum. Diagnosis is based on epidemiology, clinical and serology, but serodiagnosis is challenging because distinct clinical forms of the infection may influence serological performance. Several recombinant Treponema pallidum-proteins have already been tested for syphilis diagnosis and they are critical to achieve high accuracy in serological testing. A total of 647 samples were included in the study: 180 T. pallidum-positive samples, 191 T. pallidum-negative samples and 276 sera from individuals infected with unrelated diseases. The diagnostic potential was validated by analysis of ROC curves. For the indirect ELISA, TpN17 (100%) and TmpA (99%) showed excellent AUC values. Sensitivity values were 97.2% for TpN17 and 90.6% for TmpA, while specificity was 100% for both molecules. According to the clinical phase, TmpA ranged from 84% to 97%, with the highest value for secondary syphilis. TpN17 was 100% sensitive for the primary and secondary stages and 93.2% for recent latent syphilis. All clinical phases achieved 100% specificity. Accuracy values showed that TmpA (> 95%) and TpN17 (> 98%) presented high diagnostic accuracy for all clinical stages of syphilis. Cross-reactivity was only observed in one sample positive for Chagas disease (1.5%), when TpN17 was evaluated. On the other hand, TmpA showed reactivity for two samples positive for Chagas disease (3.1%), one sample positive for HBV (1.25%), two samples positive for HIV (9.5%) and one sample positive for HTLV (1.6%). The TmpA antigen's performance was evaluated in multiple studies for syphilis diagnosis, corroborating our findings. However, TpN17 sensitivity values have ranged in other studies. According to clinical stages of the infection, our findings obtained close performance values.

20.
Diagn Microbiol Infect Dis ; 109(2): 116227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503028

RESUMO

The objective of this systematic review is to analyze the diagnostic accuracy of rapid dengue diagnostic tests. The search was conducted in the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database and Google Scholar. ELISA and PCR assays were adopted as reference methods. Thirty-four articles were included in this systematic review. Receiver operating characteristic (ROC) and Forest Plot were performed to evaluate sensitivity and specificity for each parameter analyzed (NS1, IgM and IgG). The results revealed that the combined analysis of the IgM antibody with the NS1 antigen resulted in greater sensitivity than the isolated analysis of IgM. The three analytes together showed the best performance, with a combined sensitivity of 90 % (95 % CI: 89-92 %) using ELISA as a comparator. Thus, the present review provides relevant knowledge for decision-making between the available rapid diagnostic tests.


Assuntos
Anticorpos Antivirais , Dengue , Imunoglobulina M , Sensibilidade e Especificidade , Humanos , Anticorpos Antivirais/sangue , Cromatografia de Afinidade/métodos , Dengue/diagnóstico , Vírus da Dengue/imunologia , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Curva ROC , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA