Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Gels ; 10(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057493

RESUMO

In this study, titanium oxide TiO2 nanoparticles were produced using the sol-gel approach of green synthesis with pectin as the reducing agent. The synthetized TiO2 nanoparticles with pectin were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), visible light absorption (UV-Vis) and the BET method. The structure and morphology of the TiO2 powder were described with SEM, revealing uniform monodisperse grains with a distribution of 80% regarding sizes < 250 nm; the resulting crystal phase of synthetized TiO2 was identified as an anatase and rutile phase with a crystallinity size estimated between 27 and 40 nm. Also, the surface area was determined by nitrogen adsorption-desorption using the Brown-Emmet-Teller method, with a surface area calculated as 19.56 m2/g, typical of an IV type isotherm, indicating mesoporous NPs. UV-Vis spectra showed that sol-gel synthesis reduced the band gap from the 3.2 eV common value to 2.22 eV after estimating the optical band gap energy using the adsorption coefficient; this translates to a possible extended photo response to the visible region, improving photoactivity. In addition, the power conversion of the photoelectrode was compared based on similar assembly techniques of TiO2 electrode deposition. Quantum dot crystals were deposited ionically on the electrode surface, as two different paste formulations based on a pectin emulsifier were studied for layer deposition. The results confirm that the TiO2 paste with TiO2-synthesized powder maintained good connections between the nanocrystalline mesoporous grains and the deposited layers, with an efficiency of 1.23% with the transparent paste and 2.27% with the opaque paste. These results suggest that pectin could be used as a low-cost, functional sol-gel catalysis agent for the synthesis of controlled NPs of metal oxide. It demonstrates interesting optical properties, such as an increase in photo response, suggesting further applications to photocatalysts and biomedical features.

2.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950799

RESUMO

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.


Assuntos
Lignina , Azul de Metileno , Ultrafiltração , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Lignina/química , Lignina/análogos & derivados , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Corantes/química , Corantes/isolamento & purificação , Adsorção , Polímeros/química
3.
Environ Sci Pollut Res Int ; 31(32): 44965-44982, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954345

RESUMO

Sulfate radical-based advanced oxidation processes (SR-AOPs) are renowned for their exceptional capacity to degrade refractory organic pollutants due to their wide applicability, cost-effectiveness, and swift mineralization and oxidation rates. The primary sources of radicals in AOPs are persulfate (PS) and peroxymonosulfate (PMS) ions, sparking significant interest in their mechanistic and catalytic aspects. To develop a novel nanocatalyst for SR-AOPs, particularly for PMS activation, we synthesized carbon-coated FeCo nanoparticles (NPs) using solvothermal methods based on the polyol approach. Various synthesis conditions were investigated, and the NPs were thoroughly characterized regarding their structure, morphology, magnetic properties, and catalytic efficiency. The FeCo phase was primarily obtained at [OH-] / [Metal] = 26 and [Fe] / [Co] = 2 ratios. Moreover, as the [Fe]/[Co] ratio increased, the degree of xylose carbonization to form a carbon coating (hydrochar) on the NPs also increased. The NPs exhibited a spherical morphology with agglomerates of varying sizes. Vibrating-sample magnetometer analysis (VSM) indicated that a higher proportion of iron resulted in NPs with higher saturation magnetization (up to 167.8 emu g-1), attributed to a larger proportion of FeCo bcc phase in the nanocomposite. The best catalytic conditions for degrading 100 ppm Rhodamine B (RhB) included 0.05 g L-1 of NPs, 2 mM PMS, pH 7.0, and a 20-min reaction at 25 °C. Notably, singlet oxygen was the predominant specie formed in the experiments in the SR-AOP, followed by sulfate and hydroxyl radicals. The catalyst could be reused for up to five cycles, retaining over 98% RhB degradation, albeit with increased metal leaching. Even in the first use, dissolved Fe and Co concentrations were 0.8 ± 0.3 and 4.0 ± 0.5 mg L-1, respectively. The FeCo catalyst proved to be effective in dye degradation and offers the potential for further refinement to minimize Co2+ leaching.


Assuntos
Nanocompostos , Peróxidos , Nanocompostos/química , Peróxidos/química , Poluentes Químicos da Água/química , Catálise , Oxirredução , Ferro/química , Carbono/química
4.
Environ Technol ; : 1-12, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955495

RESUMO

A novel modification technique employing a layer-by-layer (LbL) self-assembly method, integrated with a pressure-assisted filtration system, was developed for enhancing a commercial polyethersulfone (PES) microfiltration (MF) membrane. This modification involved the incorporation of tannic acid (TA) in conjunction with graphene oxide (GO) nanosheets. The effectiveness of the LbL method was confirmed through comprehensive characterization analyses, including ATR-FTIR, SEM, water contact angle (WCA), and mean pore size measurements, comparing the modified membrane with the original commercial one. Sixteen variations of PES MF membranes were superficially modified using a three-factorial design, with the deposited amount of TA and GO as key factors. The influence of these factors on the morphology and performance of the membranes was systematically investigated, focusing on parameters such as pure water permeability (PWP), blue corazol (BC) dye removal efficiency, and flux recovery rate (FRR). The membranes produced with the maximum amount of GO (0.1 mg, 0.55 wt%) and TA as the inner and outer layers demonstrated remarkable FRR and significant BC removal, exceeding 80%. Notably, there was no significant difference observed when using either 0.2 (1.11 wt%) or 0.4 mg (2.22 wt%) in the first layer, as indicated by the Tukey mean test. Furthermore, the modified membrane designated as MF/TA0.4GO0.1TA0.4 was evaluated in the filtration of a simulated dye bath wastewater, exhibiting a BC removal efficiency of 49.20% and a salt removal efficiency of 27.74%. In conclusion, the novel PES MF membrane modification proposed in this study effectively enhances the key properties of pressure-driven separation processes.

5.
Environ Res ; 258: 119371, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876420

RESUMO

Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.


Assuntos
Cobre , Azul de Metileno , Rodaminas , Sulfetos , Rodaminas/química , Azul de Metileno/química , Sulfetos/química , Cobre/química , Catálise , Compostos de Estanho/química , Temperatura Alta , Poluentes Químicos da Água/química
6.
Int J Phytoremediation ; 26(11): 1749-1763, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757757

RESUMO

In this study, artificial neural network (ANN) tools were employed to forecast the adsorption capacity of Malachite green (MG) by baru fruit endocarp waste (B@FE) under diverse conditions, including pH, adsorbent dosage, initial dye concentration, contact time, and temperature. Enhanced adsorption efficiency was notably observed under alkaline pH conditions (pH 10). Kinetic analysis indicated that the adsorption process closely followed a pseudo-second-order model, while equilibrium studies revealed the Langmuir isotherm as the most suitable model, estimating a maximum adsorption capacity of 57.85 mg g-1. Furthermore, the chemical adsorption of MG by B@FE was confirmed using the Dubinin-Radushkevich isotherm. Thermodynamic analysis suggested that the adsorption is spontaneous and endothermic. Various ANN architectures were explored, employing different activation functions such as identity, logistic, tanh, and exponential. Based on evaluation metrics like the coefficient of determination (R2) and root mean square error (RMSE), the optimal network configuration was identified as a 5-11-1 architecture, consisting of five input neurons, eleven hidden neurons, and one output neuron. Notably, the logistic activation function was applied in both the hidden and output layers for this configuration. This study highlights the efficacy of B@FE as an efficient adsorbent for MG removal from aqueous solutions and demonstrates the potential of ANN models in predicting adsorption behavior across varying environmental conditions, emphasizing their utility in this field.


The innovative aspect of this study lies in the utilization of a new and effective adsorbent for the removal of Malachite Green (MG), derived from the fruit endocarp of baru (Dipteryx alata Vog.). The baru fruit endocarp, typically discarded as solid waste during processing, was found to possess favorable characteristics for adsorption processes and provides an adsorption capacity that exceeds that of most other similar adsorbents. Additionally, integrating Artificial Neural Networks (ANNs) enables accurate modeling of the adsorption process, eliminating the need for extensive laboratory experiments. This contributes significantly to wastewater treatment research, enhancing effectiveness and sustainability in unwanted dye removal.


Assuntos
Frutas , Redes Neurais de Computação , Corantes de Rosanilina , Termodinâmica , Poluentes Químicos da Água , Corantes de Rosanilina/química , Adsorção , Cinética , Biodegradação Ambiental , Ulva , Concentração de Íons de Hidrogênio
7.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731445

RESUMO

Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.


Assuntos
Compostos Azo , Corantes , Luffa , Poluentes Químicos da Água , Purificação da Água , Luffa/química , Compostos Azo/química , Compostos Azo/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Corantes/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731990

RESUMO

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Assuntos
Teorema de Bayes , Carvão Vegetal , Vermelho Congo , Aprendizado de Máquina , Carvão Vegetal/química , Adsorção , Vermelho Congo/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Sci Pollut Res Int ; 31(23): 34097-34111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693458

RESUMO

Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.


Assuntos
Azul de Metileno , Sementes , Termodinâmica , Poluentes Químicos da Água , Azul de Metileno/química , Cinética , Adsorção , Sementes/química , Poluentes Químicos da Água/química
10.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607157

RESUMO

The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV-Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions.

11.
Sci Rep ; 14(1): 6950, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521870

RESUMO

In this study, a CoO-Fe2O3/SiO2/TiO2 (CIST) nanocomposite was synthesized and utilized as an adsorbent to remove methylene blue (MB), malachite green (MG), and copper (Cu) from aqueous environments. The synthesized nanocomposite was characterized using field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Input parameters included pH (3-10), contact time (10-30 min), adsorbent amount (0.01-0.03 g), and pollutant concentration (20-60 mg L-1). The effects of these parameters on the removal process efficiency were modeled and optimized using the response surface methodology (RSM) based on the Box-Behnken design (BBD). The RSM-BBD method demonstrated the capability to develop a second-degree polynomial model with high validity (R2 ˃ 0.99) for the removal process. The optimization results using the RSM-BBD method revealed a removal efficiency of 98.01%, 93.06%, and 88.26% for MB, MG, and Cu, respectively, under optimal conditions. These conditions were a pH of 6, contact time of 10 min, adsorbent amount of 0.025 g, and concentration of 20 mg L-1. The synthesized adsorbent was recovered through five consecutive adsorption-desorption cycles using hydrochloric acid. The results showed an approximately 12% reduction from the first to the seventh cycle. Also, MB, MG, and Cu removal from real water samples in optimal conditions was achieved in the range of 81.69-98.18%. This study demonstrates the potential use of CIST nanocomposite as an accessible and reusable option for removing MB, MG, and Cu pollutants from aquatic environments.

12.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429983

RESUMO

The insecticidal crystal proteins produced by Bacillus thuringiensis during sporulation are active ingredients against lepidopteran, dipteran, and coleopteran insects. Several methods have been reported for their quantification, such as crystal counting, ELISA, and SDS-PAGE/densitometry. One of the major tasks in industrial processes is the analysis of raw material dependency and costs. Thus, the crystal protein quantification method is expected to be compatible with the presence of complex and inexpensive culture medium components. This work presents a revalidated elution-based method for the quantification of insecticidal crystal proteins produced by the native strain B. thuringiensis RT. To quantify proteins, a calibration curve was generated by varying the amount of BSA loaded into SDS-PAGE gels. First, SDS-PAGE was performed for quality control of the bioinsecticide. Then, the stained protein band was excised from 10% polyacrylamide gel and the protein-associated dye was eluted with an alcoholic solution of SDS (3% SDS in 50% isopropanol) during 45 min at 95°C. This protocol was a sensitive procedure to quantify proteins in the range of 2.0-10.0 µg. As proof of concept, proteins of samples obtained from a complex fermented broth were separated by SDS-PAGE. Then, Cry1 and Cry2 proteins were properly quantified.


Assuntos
Bacillus thuringiensis , Inseticidas , Inseticidas/análise , Endotoxinas/análise , Endotoxinas/química , Resíduos/análise , Toxinas de Bacillus thuringiensis/análise , Proteínas de Bactérias/química , Proteínas Hemolisinas , Eletroforese em Gel de Poliacrilamida
13.
Environ Sci Pollut Res Int ; 31(19): 28025-28039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523211

RESUMO

Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.


Assuntos
Cobalto , Compostos Férricos , Oxigênio Singlete , Cobalto/química , Compostos Férricos/química , Oxigênio Singlete/química , Superóxidos/química , Compostos Azo/química , Poluentes Químicos da Água/química , Corantes/química , Ferro/química , Peróxido de Hidrogênio/química
14.
J Mol Graph Model ; 128: 108724, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340691

RESUMO

This study focuses on the use of Density Functional Theory calculations with two main approaches: computational chemistry and computational physics. The following three cases were considered for the derivation: (I) computational chemistry using the M06 hybrid functional, (II) computational chemistry using the standard PBE functional including vdW interactions, and (III) computational physics using the standard PBE functional including vdW interactions and periodic boundary conditions. Since the approximation using hybrid functionals M06 has been extensively validated, this method was used as a reference. The second and third methods are less expensive, it is ideal for use to extend large systems. From the sensitized molecules are found in the gas phase and include solvent effects through the integral equation formalism polarizable continuum model. In a systematic analysis of 15 Cu complex molecules, a complete characterization for DSSCs has been carried out and molecular geometry, electronic and optical measurements have been reported.


Assuntos
Cobre , Teoria Quântica , Cobre/química , Interações Hidrofóbicas e Hidrofílicas
15.
Environ Sci Pollut Res Int ; 31(41): 53691-53705, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38206467

RESUMO

In this study, sugarcane bagasse ash (SCBA), obtained as residue from the sugar mill, was used as an adsorbent for Acid Red 27 (AR27) removal from aqueous solutions. The ash characterization data showed 23.63% of organic compounds and silica (α-SiO2) as the most expressive inorganic compound (confirmed by X-ray diffractogram), the BET surface area had a value of 62.79 m2.g-1 and the pHpzc was 8.45. Regarding the adsorptive tests, the optimal initial pH to the dye removal was 2.0. The adsorption equilibrium reached in about 4 h contact time and optimum SCBA dosage was found to be 4 g.L-1. The pseudo-second order model best represented the adsorption kinetics. The Freundlich equation presented the best fit to the equilibrium data for the removal of AR27 by ash, with maximum adsorption capacity of 15 mg.g-1 at pH 2.0. Thermodynamic study indicate that AR27 adsorption on SCBA occurs through a physisorption mechanism, with ΔHºads < 15 kJ.mol-1. The ΔHºads evaluated by Vant' Hoff equation was explained as a combination of water desorption enthalpy, ΔHºW and isosteric like enthalpy, ΔHºD for the dye adsorption in liquid environment. The ΔHºD = 9.2 kJ.mol-1 was calculated from Clausius-Clapeyron approach. The effects of coexisting anions on the adsorption and regeneration and reuse of the adsorbent were also investigated. This study suggests that SCBA, which was used without any pretreatment, has the potential to be applied as a low-cost adsorbent to mitigate effluents contamination with AR27 dye at low concentrations.


Assuntos
Celulose , Saccharum , Termodinâmica , Saccharum/química , Adsorção , Cinética , Celulose/química , Poluentes Químicos da Água/química , Corantes/química , Concentração de Íons de Hidrogênio
16.
Environ Sci Pollut Res Int ; 31(41): 53706-53717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38267649

RESUMO

The present study focuses on the elaboration of magnetic nanocomposites by the in situ incorporation of magnetite (Fe3O4) nanoparticles (NPs) with spherical and nanoflower-like morphologies in graphitic carbon nitride (g-C3N4) sheets using two different synthetic routes. Nanomaterials are characterized by TEM, SEM, XRD, FTIR, BET, zetametry, vibrating sample magnetometry, and UV-vis absorption spectroscopy. The decoration of the carbon nitride matrix with the magnetic NPs enhanced optical and textural properties. The influence of the morphology of the magnetic NPs on the adsorptive and photocatalytic properties of the nanocomposites under different pH conditions (4.5, 6.9, and 10.6) was assessed from batch tests to remove methylene blue (MB) from aqueous solutions. In extreme pH conditions, the nanocomposites exhibited lower or equivalent MB removal capacity compared to the pure g-C3N4. However, at neutral medium, the nanocomposite with incorporated Fe3O4 nanoflowers showed a significantly higher removal efficiency (80.7%) due to the combination of a high adsorption capacity and a good photocatalytic activity in this pH region. The proposed nanocomposite is a promising alternative to remove cationic dyes from water by magnetic assistance, since no pH adjustment of the polluted effluent is required, reducing costs and environmental impact in the dyeing industry.


Assuntos
Azul de Metileno , Nanocompostos , Nitrilas , Poluentes Químicos da Água , Azul de Metileno/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Nitrilas/química , Adsorção , Purificação da Água/métodos , Corantes/química , Grafite/química , Compostos de Nitrogênio
17.
Environ Manage ; 73(2): 425-442, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864753

RESUMO

The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297-0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material's porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L-1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material's adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Termodinâmica , Azul de Metileno/química , Fotólise , Concentração de Íons de Hidrogênio , Temperatura , Cinética , Adsorção , Água , Poluentes Químicos da Água/química
18.
Braz J Microbiol ; 55(1): 471-485, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052770

RESUMO

Microorganisms that inhabit the cold Antarctic environment can produce ligninolytic enzymes potentially useful in bioremediation. Our study focused on characterizing Antarctic bacteria and fungi from marine sediment samples of King George and Deception Islands, maritime Antarctica, potentially affected by hydrocarbon influence, able to produce enzymes for use in bioremediation processes in environments impacted with petroleum derivatives. A total of 168 microorganism isolates were obtained: 56 from sediments of King George Island and 112 from Deception Island. Among them, five bacterial isolates were tolerant to cell growth in the presence of diesel oil and gasoline and seven fungal were able to discolor RBBR dye. In addition, 16 isolates (15 bacterial and one fungal) displayed enzymatic emulsifying activities. Two isolates were characterized taxonomically by showing better biotechnological results. Psychrobacter sp. BAD17 and Cladosporium sp. FAR18 showed pyrene tolerance (cell growth of 0.03 g mL-1 and 0.2 g mL-1) and laccase enzymatic activity (0.006 UL-1 and 0.10 UL-1), respectively. Our results indicate that bacteria and fungi living in sediments under potential effect of hydrocarbon pollution may represent a promising alternative to bioremediate cold environments contaminated with polluting compounds derived from petroleum such as polycyclic aromatic hydrocarbons and dyes.


Assuntos
Microbiota , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Regiões Antárticas , Biodegradação Ambiental , Bioprospecção , Hidrocarbonetos , Gasolina , Sedimentos Geológicos/microbiologia , Bactérias/genética
19.
Int J Retina Vitreous ; 9(1): 77, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057831

RESUMO

BACKGROUND: The epiretinal membrane (ERM) is a nonvascular fibrocellular tissue formed by cellular metaplasia and proliferation at the vitreoretinal surface and is generally treated by pars plana vitrectomy (PPV) with or without internal limiting membrane (ILM) peeling. This network meta-analysis aimed to compare the efficacy of all available ERM removal interventions and assessed the use and efficacy of surgical dyes in managing idiopathic ERMs. METHODS: MEDLINE, EMBASE, Cochrane CENTRAL, and the US National Library of Medicine were searched (June 28, 2023). Clinical studies that included patients with ERMs were included. Randomized controlled trials (RCTs) were also appraised using Cochrane risk of bias (ROB). RESULTS: Ten RCTs and ten non-RCTs were included in this study. A pairwise meta-analysis between ERM removal and combined ERM and ILM removal showed no significant difference in visual outcome (change in BCVA) 1 year postintervention (MD = - 0.0034, SE = 0.16, p = 0.832). Similarly, there was no significant difference in the central macular thickness postoperatively between the two groups (MD = - 4.95, SE = 11.11, p = 0.656) (Q = 4.85, df = 3, p = 0.182, I2 = 41.21%). The difference in ERM recurrence between the groups was also not statistically significant (OR = 4.64, p = 0.062, I2 = 0). In a network meta-analysis, there was no significant difference in visual outcomes between ERM removal only and other treatment modalities: combined ILM and ERM removal (MD = 0.039, p = 0.837) or watchful waiting (MD = 0.020, p = 0.550). In a network meta-analysis, there was no significant difference in the visual outcomes between ERM removal alone and dye-stained combined ERM and ILM peeling (MD = 0.122, p = 0.742 for brilliant blue G; BBG and MD = 0.00, p = 1.00 for membrane blue-dual; MBD). The probability of being a better surgical dye for better visual outcomes was 0.539 for the MBD group and 0.396 for the BBG group. The recurrence of ERM was not significantly different when the ILM was stained with any of the dyes. No study was judged on ROB assessment as having low ROB in all seven domains. CONCLUSION: The two types of surgical modalities provided comparable efficacy, with no significant differences between the outcomes. Among the dye-assisted ILM peeling methods, the membrane blue-dual dye was the most effective in providing better structural and functional outcomes.

20.
Materials (Basel) ; 16(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138808

RESUMO

DyMnO3 is a p-type semiconductor oxide with two crystal systems, orthorhombic and hexagonal. This material highlights its ferroelectric and ferromagnetic properties, which have been the subject of numerous studies. Nevertheless, its photocatalytic activity has been less explored. In this work, the photocatalytic activity of DyMnO3 is evaluated through the photodegradation of MG dye. For the synthesis of this oxide, a novel and effective method was used: polymer-decomposition. The synthesized powders contain an orthorhombic phase, with a range of absorbances from 300 to 500 nm and a band gap energy of 2.4 eV. It is also highlighted that, when using this synthesis method, some of the main diffraction lines related to the orthorhombic phase appear at 100 °C. Regarding its photocatalytic activity, it was evaluated under visible light (λ = 405 nm), reaching a photodegradation of approximately 88% in a period of 30 min. Photocurrent tests reveal a charge carrier separation (e-,h+) at a 405 nm wavelength. The main reactive oxygen species (ROS) involved in the photodegradation process were radicals, OH•, and photo-holes (h+). These results stand out because it is the first time that the photodegradation capability of this oxide in the visible spectrum has been evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA