Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400845, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352621

RESUMO

Highly selective and divergent syntheses, which are crucial in both organic synthesis and medicinal chemistry, involve significant advancements in compound accessibility. By modifying α-cyano esters into α-cyano ketones, the synthesis pathway broadens to include a diverse range of 4-CN, 5-amino, and 5-arylamino derivatives of 1,2,3-triazoles, which are achieved notably through the Dimroth rearrangement. This versatility extends further with the potential for a triple cascade reaction, leading to the production of carboximidamide compounds, which are facilitated by the Cornforth rearrangement. Advancements in compound accessibility not only expand the repertoire of synthesized molecules but also open new avenues for potential pharmacological agents. Building on these findings, we have developed an innovative and efficient method for the divergent synthesis of functionalized 1,2,3-triazoles. This method strategically utilizes α-cyanocarbonyls and arylazides by harnessing their reactivity and compatibility to orchestrate a variety of molecular transformations. By optimizing these substrates, our goal is to simplify synthetic routes, improve product yields, and accelerate the discovery and development of new chemical entities with promising biological activities.

2.
Bioorg Chem ; 116: 105250, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469833

RESUMO

1,2,3-triazole heterocycles stand out in medicinal chemistry for having great structural diversity and bioactivities. In this study, two series of triazoles were synthesized. One was obtained by the 1,3-dipolar cycloaddition reaction between ethyl cyanoacetate and several phenyl azides forming 1H-1,2,3-triazoles and the other by rearrangement of Dimroth forming and 2H-1,2,3-triazoles. Both series were shown to be active against the epimastigote form of Trypanosoma cruzi. The 1,2,3-triazoles 16d (S.I. between 100 and 200), 17d and 16f (S.I. > 200) were the most active compounds and capable of breaking the plasma membrane of trypomastigotes acting on CYP51 and inhibiting ergosterol synthesis. Candidate 16d exhibited the best and most favorable profile when interacting with CYP51.


Assuntos
Doença de Chagas/tratamento farmacológico , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA