Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112156, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842088

RESUMO

Monocytes can differentiate into macrophages (Mo-Macs) or dendritic cells (Mo-DCs). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation of monocytes into Mo-Macs, while the combination of GM-CSF/interleukin (IL)-4 is widely used to generate Mo-DCs for clinical applications and to study human DC biology. Here, we report that pharmacological inhibition of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) in the presence of GM-CSF and the absence of IL-4 induces monocyte differentiation into Mo-DCs. Remarkably, we find that simultaneous inhibition of PPARγ and the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) induces the differentiation of Mo-DCs with stronger phenotypic stability, superior immunogenicity, and a transcriptional profile characterized by a strong type I interferon (IFN) signature, a lower expression of a large set of tolerogenic genes, and the differential expression of several transcription factors compared with GM-CSF/IL-4 Mo-DCs. Our findings uncover a pathway that tailors Mo-DC differentiation with potential implications in the fields of DC vaccination and cancer immunotherapy.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Monócitos , Humanos , Monócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , PPAR gama/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
2.
Front Cell Infect Microbiol ; 12: 897133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903201

RESUMO

Lipopolysaccharide (LPS) induces the activation of dendritic cells (DCs) throughout the engagement of toll-like receptor 4. LPS-activated DCs show increased capacity to process and present pathogen-derived antigens to activate naïve T cells. DCs-based vaccines have been successfully used to treat some cancer types, and lately transferred to the field of infectious diseases, in particular against HIV. However, there is no vaccine or DC therapy for any parasitic disease that is currently available. The immune response against Trypanosoma cruzi substantially relies on T cells, and both CD4+ and CD8+ T lymphocytes are required to control parasite growth. Here, we develop a vaccination strategy based on DCs derived from bone marrow, activated with LPS and loaded with TsKb20, an immunodominant epitope of the trans-sialidase family of proteins. We extensively characterized the CD8+ T cell response generated after immunization and compared three different readouts: a tetramer staining, ELISpot and Activation-Induced Marker (AIM) assays. To our knowledge, this work shows for the first time a proper set of T cell markers to evaluate specific CD8+ T cell responses in mice. We also show that our immunization scheme confers protection against T. cruzi, augmenting survival and reducing parasite burden in female but not male mice. We conclude that the immunization with LPS-activated DCs has the potential to prime significant CD8+ T cell responses in C57BL/6 mice independently of the sex, but this response will only be effective in female, possibly due to mice sexual dimorphisms in the response generated against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Linfócitos T CD8-Positivos , Doença de Chagas/parasitologia , Células Dendríticas , Feminino , Imunização , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
3.
Anticancer Res ; 41(7): 3419-3427, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230137

RESUMO

BACKGROUND/AIM: Liver metastases are among the principal mortality causes in cancer patients. Dendritic cell immunotherapies have shown promising results in some tumors by mediating immunological mechanisms that could be involved in liver metastases during primary tumor growth. The present study aimed to evaluate the impact of prophylactic dendritic cell vaccination on the liver of mice with 4T1 mouse breast carcinoma. MATERIALS AND METHODS: Adult female Balb/c mice were submitted or not to vaccination with dendritic cells before the induction of 4T1 tumor lineage. Liver tissues from mice were analyzed by flow cytometry (markers CD3, CD4, CD8, CD25, IL-10, IL-12, IL-17, TNF-α, IFN-γ, T-bet, GATA3, RORγt, and FoxP3) and hematoxylin-eosin. The dendritic cell vaccine was differentiated and matured ex vivo from the bone marrow. RESULTS: Prophylactic vaccination reduced areas of liver metastases (p=0.0049), induced an increase in the percentage of total T and cytotoxic T lymphocytes (p<0.0001), as well as FoxP3+ (p<0.0001). It also increased the levels of cytokines IL-10 and IL-17 in helper T lymphocytes (p<0.0001). CONCLUSION: The prophylactic dendritic cell vaccine changed the cell phenotype in the immune response of liver, and it was able to reduce metastases. Cytotoxic T cells and regulatory T lymphocytes were more present, likewise, the production of IL-10 and IL-7 simultaneously, demonstrating that the vaccine can induce a state of control of pro-inflammatory responses, which can provide a less favorable environment for metastatic tumor growth.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias Hepáticas/imunologia , Fígado/imunologia , Animais , Biomarcadores Tumorais/imunologia , Medula Óssea/imunologia , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Imunidade/imunologia , Imunoterapia/métodos , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Vacinação/métodos
4.
Breast Cancer Res Treat ; 166(2): 393-405, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28756536

RESUMO

PURPOSE: Regulatory T cells (Tregs) impair the clinical benefit of cancer immunotherapy. To optimize the antitumor efficacy of therapeutic dendritic cell (DC) vaccines, we aimed to inhibit Foxp3, a transcription factor required for Treg function. METHODS: Mice bearing established syngeneic LM3 and 4T1 breast tumors were treated with antitumor DC vaccines and a synthetic peptide (P60) that has been shown to inhibit Foxp3. RESULTS: Treatment with P60 improved the therapeutic efficacy of DC vaccines in these experimental models. In addition, monotherapy with P60 inhibited tumor growth in immunocompetent as well as in immuno-compromised animals bearing established tumors. We found expression of Foxp3 in human and murine breast tumor cells. P60 inhibited IL-10 secretion in breast cancer cells that expressed Foxp3. CONCLUSIONS: Our results suggest that Foxp3 blockade improves the therapeutic efficacy of DC vaccines by inhibition of Tregs and through a direct antitumor effect. This strategy could prove useful to neutralize the immunosuppressive microenvironment and to boost antitumor immunity in breast cancer.


Assuntos
Neoplasias da Mama/terapia , Peptídeos Penetradores de Células/administração & dosagem , Células Dendríticas/transplante , Fatores de Transcrição Forkhead/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacologia , Células Dendríticas/imunologia , Feminino , Humanos , Imunoterapia , Camundongos , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Cancer Res Clin Oncol ; 143(9): 1713-1732, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432455

RESUMO

PURPOSE: Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. METHODS: DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. RESULTS: CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. CONCLUSIONS: These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.


Assuntos
Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Vacinas Anticâncer/farmacologia , Células Dendríticas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA