RESUMO
In arid and semiarid environments, evaporation is responsible for significant water losses from reservoirs. This condition is of special concern in the Brazilian Northeast region, as this is one of the most populous semiarid areas in the planet. The present study aims to assess the spatio-temporal variability of evaporation rates on the water surface of Pentecoste reservoir, located in the Brazilian semiarid region, by using both the hydrodynamic model Delft3D and a remote sensing technique (RS). While RS has already been used to evaluate the spatial distribution of evaporation rates in lakes, Delft3D was innovatively tested and applied for this purpose for the first time in this study. The calibration results showed an accurate reproduction of the water level variability (r2 of 0.997), along with a satisfactory calibration of the reservoir's thermal structure for the full water column (MAE of 0.539 °C, RMSE of 0.572 °C, and NMAE of 0.008). Curves relating monthly evaporation rates with air temperature and wind speed showed strong correlation between those variables (r2 of 0.817 for air temperature and 0.849 for wind speed). Also, the averaged evaporation rates modeled by Delft3D differed by less than 5% compared to RS. Regarding the spatial distribution results, for the wet period the evaporation patterns were similar to those of RS, while in the dry period RS provided a more stable evaporation pattern when compared to Delft3D. The innovative approach proposed in the present study can be used to better understand the evaporation dynamics in surface waters and optimize the location of damping evaporation structures, namely air diffusers, shading systems, and floating solar panels, which are important for improving water availability, not only in drylands.
Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Temperatura , Água/química , VentoRESUMO
This data article presents set-up and input data files to model a surface river plume through curvilinear nested grid in double-way mode. The hydrodynamic modelling in river deltas with intense transport processes and complex bathymetry such as the Magdalena River delta, requires a mesh grid that ease the natural river discharge into the ocean. The aforementioned may be challenging due to the numerical scheme and stability restrictions of the numerical models that difficult having efficient and effective validated simulations. This dataset files are a reference to perform analysis of the hydrodynamic river deltas, meaningful for optimizing time and resources, easing the planning of measurement campaigns what reduce risks of the personnel and instrumentation during equipment deployment and field work .The application of the set-up and input data files of this data article is shown in Rueda-Bayona et al. [1].
RESUMO
This article contains the set-up and input files of the implementation of Delft3D model to determine extreme hydrodynamic forces performed in Rueda-Bayona et al. [1]. The model was configured with a multidomain grid using double-way communication between the hydrodynamic and wave module. The multidomain grids solve faster than single and nested grids because require less grid points to calculate. Also, the double-way communication between the hydrodynamic and wave modules allows to consider the non-linear interactions of wind, waves, tides and currents. Because there are no modelling examples related to multidomain grids in the open access official web site of Delft3d model, this data contributes to increase the availability information of this necessity. Finally, the files of this article are ready to be run in the Delft3D model to perform a sensitivity test recommended in Rueda-Bayona et al. [1].