Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(15): e0017021, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980598

RESUMO

Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that dynein light-chain roadblock type 2 (Dynlrb2) knockdown significantly decreases MLV infection compared to nonsilenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). In this study, we aimed to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells in which the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. In contrast, an increase in nuclear localization was observed when Dynlrb2 was overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. IMPORTANCE Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light-chain Dynlrb2 for infection, retrograde traffic, and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Dineínas do Citoplasma/genética , Dineínas/metabolismo , Vírus da Leucemia Murina/crescimento & desenvolvimento , Replicação Viral/genética , Células 3T3 , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Núcleo Celular/virologia , Dineínas/genética , Produtos do Gene gag/genética , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Camundongos , Microtúbulos/metabolismo
2.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250122

RESUMO

How murine leukemia virus (MLV) travels from the cell membrane to the nucleus and the mechanism for nuclear entry of MLV DNA in dividing cells still remain unclear. It seems likely that the MLV preintegration complex (PIC) interacts with cellular proteins to perform these tasks. We recently published that the microtubule motor cytoplasmic dynein complex and its regulator proteins interact with the MLV PIC at early times of infection, suggesting a functional interaction between the incoming viral particles, the dynein complex, and dynein regulators. To better understand the role of the dynein complex in MLV infection, we performed short hairpin RNA (shRNA) screening of the dynein light chains on MLV infection. We found that silencing of a specific light chain of the cytoplasmic dynein complex, DYNLRB2, reduced the efficiency of infection by MLV reporter viruses without affecting HIV-1 infection. Furthermore, the overexpression of DYNLRB2 increased infection by MLV. We conclude that the DYNLRB2 light chain of the cytoplasmic dynein complex is an important and specific piece of the host machinery needed for MLV infection.IMPORTANCE Retroviruses must reach the chromatin of their host to integrate their viral DNA, but first they must get into the nucleus. The cytoplasm is a crowded environment in which simple diffusion is slow, and thus viruses utilize retrograde transport along the microtubule network, mediated by the dynein complex. Different viruses use different components of this multisubunit complex. We have found that murine leukemia virus (MLV) associates functionally and specifically with the dynein light chain DYNLRB2, which is required for infection. Our study provides more insight into the molecular requirements for retrograde transport of the MLV preintegration complex and demonstrates, for the first time, a role for DYNLRB2 in viral infection.


Assuntos
Dineínas do Citoplasma/genética , Dineínas do Citoplasma/fisiologia , Interações Hospedeiro-Patógeno , Vírus da Leucemia Murina/fisiologia , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/virologia , Células HEK293 , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Microtúbulos/virologia , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA