Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Biol Cell ; 116(5): e2300128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538536

RESUMO

BACKGROUND INFORMATION: The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme. RESULTS: The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner. CONCLUSIONS AND SIGNIFICANCE: Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.


Assuntos
Dano ao DNA , Fosfatase 3 de Especificidade Dupla , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , RNA Mensageiro , Humanos , Fosfatase 3 de Especificidade Dupla/metabolismo , Fosfatase 3 de Especificidade Dupla/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Fosforilação , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo
2.
Front Cell Dev Biol ; 9: 624933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777934

RESUMO

The dual-specificity phosphatase 3 (DUSP3), an atypical protein tyrosine phosphatase (PTP), regulates cell cycle checkpoints and DNA repair pathways under conditions of genotoxic stress. DUSP3 interacts with the nucleophosmin protein (NPM) in the cell nucleus after UV-radiation, implying a potential role for this interaction in mechanisms of genomic stability. Here, we show a high-affinity binding between DUSP3-NPM and NPM tyrosine phosphorylation after UV stress, which is increased in DUSP3 knockdown cells. Specific antibodies designed to the four phosphorylated NPM's tyrosines revealed that DUSP3 dephosphorylates Y29, Y67, and Y271 after UV-radiation. DUSP3 knockdown causes early nucleolus exit of NPM and ARF proteins allowing them to disrupt the HDM2-p53 interaction in the nucleoplasm after UV-stress. The anticipated p53 release from proteasome degradation increased p53-Ser15 phosphorylation, prolonged p53 half-life, and enhanced p53 transcriptional activity. The regular dephosphorylation of NPM's tyrosines by DUSP3 balances the p53 functioning and favors the repair of UV-promoted DNA lesions needed for the maintenance of genomic stability.

3.
Cell Biochem Biophys ; 79(2): 261-269, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33479884

RESUMO

DUSP3 is a phosphatase expressed and active in several tissues that dephosphorylates tyrosine residues in many regulatory proteins of cellular activities such as proliferation, survival, and cell death. Recently, two new independent functions were assigned to this enzyme: dephosphorylation of focal adhesion kinase (FAK) and regulation of nucleotide-excision repair (NER) pathway. Genotoxic stress by UV radiation is known to affect cell morphology, adhesion, and migration for affecting, for example, the Rho GTPases that regulate actin cytoskeleton. This work investigated the intersection of DUSP3 function, XPA protein activity, and UV toxicity by examining cell migration, FAK, and SRC kinase phosphorylation status, in addition to cell morphology, in fibroblast cells proficient (MRC-5) or deficient (XPA) of the NER pathway. DUSP3 loss reduced cell migration of normal cells, which was stimulated by the genotoxic stress, effects evidenced in presence of serum mitogenic stimulus. However, NER-deficient cells migration response was the opposite since DUSP3 loss increased migration, especially after cells being exposed to UV stress. The levels of pFAK(Y397) peaked 15 min and 1 h after UV radiation in normal cells, but only slightly increased in repair-deficient cells. However, the DUSP3 knockdown strongly raised pFAK(Y397) levels in both cells, but especially in XPA cells as supported by the higher SRC activity. These effects impacted on the dynamics of actin-based structures formation, such as stress fibres, apparently dependent on DUSP3 and DNA-repair (NER) proficiency of the cells. Altogether our findings suggest this dual-phosphatase is bridging gaps between the complex regulation of cell morphology, motility, and genomic stability.


Assuntos
Movimento Celular/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Raios Ultravioleta , Adesão Celular/efeitos da radiação , Linhagem Celular , Reparo do DNA/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Fosfatase 3 de Especificidade Dupla/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Fosforilação/efeitos da radiação , Interferência de RNA , RNA Interferente Pequeno/metabolismo
4.
Cell Cycle ; 19(12): 1545-1561, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32380926

RESUMO

The DUSP3 phosphatase regulates cell cycle, proliferation, apoptosis and senescence of different cell types, lately shown as a mediator of DNA repair processes. This work evaluated the impact of DUSP3 loss of function (lof) on DNA repair-proficient fibroblasts (MRC-5), NER-deficient cell lines (XPA and XPC) and translesion DNA synthesis (TLS)-deficient cells (XPV), after UV-radiation stress. The levels of DNA strand breaks, CPDs and 6-4-PPs have accumulated over time in all cells under DUSP3 lof, with a significant increase in NER-deficient lines. The inefficient repair of these lesions increased sub-G1 population of XPA and XPC cells 24 hours after UV treatment, notably marked by DUSP3 lof, which is associated with a reduced cell population in G1, S and G2/M phases. It was also detected an increase in S and G2/M populations of XPV and MRC-5 cells after UV-radiation exposure, which was slightly attenuated by DUSP3 lof due to a discrete increase in sub-G1 cells. The cell cycle progression was accompanied by changes in the levels of the main Cyclins (A1, B1, D1 or E1), CDKs (1, 2, 4 or 6), and the p21 Cip1 inhibitor, in a DUSP3-dependent manner. DUSP3 lof affected the proliferation of MRC-5 and XPA cells, with marked worsening of the XP phenotype after UV radiation. This work highlights the roles of DUSP3 in DNA repair fitness and in the fine control of regulatory proteins of cell cycle, essential mechanisms to maintenance of genomic stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Fosfatase 3 de Especificidade Dupla/metabolismo , Instabilidade Genômica , Ciclo Celular/efeitos da radiação , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Inativação Gênica/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Humanos , Dímeros de Pirimidina/metabolismo , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta
5.
São Paulo; s.n; s.n; 2020. 133 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1292693

RESUMO

A regulação da fosforilação/desfosforilação das proteínas é o eixo central de muitas cascatas de sinalização. A fosfatase DUSP3, constituída apenas por um único domínio catalítico, desempenha papéis fundamentais na proliferação e senescência celular. Nas células HeLa, submetidas ao estresse genotóxico, o DUSP3 interage fisicamente com as proteínas HNRNPC, mas o efeito dessa função molecular ainda é desconhecido. Aqui demostramos que a ausência de DUPS3 mantem a proteína HNRNPC1/C2 num estado hiperfosforilado. Para entender melhor o envolvimento da interação DUSP3-HNRNPC nas funções biológicas da HNRNPC1/C2, foram estudadas células de fibroblasto deficientes de DUSP3. Foi analisado o efeito da deficiência de DUSP3 na biogênese dos ribossomos através do ensaio de perfil de polirribossomos e quantificação dos rRNAs com RT-qPCR. Os resultados mostraram que a deficiência de DUSP3 não afeta a maturação das subunidades ribossômicas, mas teria um impacto na transcrição dos pré-rRNAs e no acumulo das espécies 47S/45S. A expressado de genes contendo sequencias IRES foi analisado através do RT-qPCR e sua tradução ao longo do ciclo e em condições de estresse. Da expressão, não existe nenhuma diferença nos níveis de transcrição dos genes c-myc e xiap nas células normais e deficientes de DUSP3 em condições basais. Embora a síntese destas proteínas é maior nas células deficientes, mantendo um nível maior de tradução ao longo de todo o ciclo. Sob condições de estresse, esta duas proteínas sempre mantem uma maior expressão nas células Knockdown para DUSP3. Neste trabalho também foi estabelecido a presença de DUSP3 nos complexos da subunidade 40S, através do analise das frações obtidas do ensaio de polirribossomos e interação in vitro (Co-IP). A presença de DUSP3 nas subunidades 40S, os monossomas 80S e polissomos poderia ser através da interação direta com proteínas que possuem um domínio RRM e seria dependente dos complexos formados pelas proteínas e seus RNAs alvos. Aqui mostramos a interação in vitro de DUSP3 com a proteína PABP (com quatro domínios RRM), proteína que tem um papel importante na manutenção da taxa global de tradução, esta interação é enfraquecida na ausência de RNAs. A deficiência de DUSP3 também teria um impacto na interação das proteínas HNRNPC1/C2 e P53 in vitro. A ausência de DUSP3 diminui a interação HNRNPC-P53 através da hiperfosforilação da proteina HNRNPC1/C2. A perda desta interação, aumentaria os níveis da proteína P53 na célula deficiente de DUSP3 e poderia gerar parada no ciclo celular. Através de ensaios de imunofluorescência, se observo uma maior taxa de transcrição global na célula deficiente de DUSP3. Por fim, aqui demostramos que a interação direta de DUSP3 e HNRNPC1/C2 vai permitir a regulação das funções biológicas desta proteína, e a ausência de DUSP3 vai ter efeitos pleiotrópicos na homeostase da célula


inglêsProtein phosphorylation/dephosphorylation regulation is a central axis of many signaling cascades. DUSP3 phosphatase, consisting only of a single catalytic domain, plays key roles in cell proliferation and senescence. In HeLa cells subjected to genotoxic stress, DUSP3 physically interacts with HNRNPC proteins, but the effect of this molecular function is still unknown. Here we demonstrate that the absence of DUPS3 keeps the HNRNPC1/C2 proteins in a hyperphosphorylated state. To better understand the involvement of DUSP3- HNRNPC interaction on the biological functions of HNRNPC1/C2, DUSP3 deficient fibroblast cells were studied. The effect of DUSP3 deficiency on ribosome biogenesis was analyzed by polyribosome profile assay and RT-qPCR for rRNA quantification. The results showed that DUSP3 deficiency does not affect ribosomal subunit maturation, but would have an impact on transcription of pre-rRNAs and accumulation of 47S / 45S species. The expression of genes containing IRES sequences was analyzed by RT-qPCR and their translation throughout the cycle and under stress conditions. From expression, there is no difference in transcriptional levels of c-myc and xiap genes in normal and DUSP3 deficient cells under basal conditions. Although, the synthesis of these proteins is higher in deficient cells and these maintain a higher level of translation throughout the cell cycle. Under stress conditions, these two proteins always maintain higher expression in Knockdown cells for DUSP3. In this work, the presence of DUSP3 in the 40S ribosomal subunit complexes was also established by analyzing the fractions obtained from the polyribosome assay and in vitro interaction (CoIP). The presence of DUSP3 in the 40S subunits, 80S monosomes and polysomes could be through direct interaction with proteins that have an RRM domain and would be dependent on the complexes formed by the proteins and their target RNAs. Here we show the in vitro interaction of DUSP3 with PABP protein (with four RRM domains), a protein that plays an important role in maintaining the overall translation rate, this interaction is weakened in the absence of RNAs. DUSP3 deficiency would also have an impact on the interaction of HNRNPC1/C2 and P53 proteins in vitro. The absence of DUSP3 decreases HNRNPC-P53 interaction through hyperphosphorylation of the HNRNPC1/C2 proteins. Loss of this interaction would increase P53 protein levels in the DUSP3 deficient cell and could lead to cell cycle arrest. Through immunofluorescence assays, a higher overall transcription rate is observed in the DUSP3 deficient cell. Finally, we demonstrate that the direct interaction of DUSP3 and HNRNPC1/C2 will allow the regulation of the biological functions of this protein, and the absence of DUSP3 will have pleiotropic effects on cell homeostasis


Assuntos
Dano ao DNA , Ciclo Celular , Células , Genes myc , Origem da Vida , Manutenção , Fosforilação , Polirribossomos , Pontos de Checagem do Ciclo Celular , Fibroblastos , Homeostase
6.
Artigo em Inglês | MEDLINE | ID: mdl-30069819

RESUMO

Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.


Assuntos
Fosfatase 3 de Especificidade Dupla/genética , Fosfatase 3 de Especificidade Dupla/fisiologia , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Humanos , Proteínas Quinases Ativadas por Mitógeno , Neoplasias/enzimologia , Neovascularização Patológica , Fosforilação , Proteínas Tirosina Fosfatases , Proteínas Tirosina Quinases
7.
Clinics ; Clinics;73(supl.1): e466s, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-952823

RESUMO

Protein tyrosine phosphatases have long been considered key regulators of biological processes and are therefore implicated in the origins of various human diseases. Heterozygosity, mutations, deletions, and the complete loss of some of these enzymes have been reported to cause neurodegenerative diseases, autoimmune syndromes, genetic disorders, metabolic diseases, cancers, and many other physiological imbalances. Vaccinia H1-related phosphatase, also known as dual-specificity phosphatase 3, is a protein tyrosine phosphatase enzyme that regulates the phosphorylation of the mitogen-activated protein kinase signaling pathway, a central mediator of a diversity of biological responses. It has been suggested that vaccinia H1-related phosphatase can act as a tumor suppressor or tumor-promoting phosphatase in different cancers. Furthermore, emerging evidence suggests that this enzyme has many other biological functions, such as roles in immune responses, thrombosis, hemostasis, angiogenesis, and genomic stability, and this broad spectrum of vaccinia H1-related phosphatase activity is likely the result of its diversity of substrates. Hence, fully identifying and characterizing these substrate-phosphatase interactions will facilitate the identification of pharmacological inhibitors of vaccinia H1-related phosphatase that can be evaluated in clinical trials. In this review, we describe the biological processes mediated by vaccinia H1-related phosphatase, especially those related to genomic stability. We also focus on validated substrates and signaling circuitry with clinical relevance in human diseases, particularly oncogenesis.


Assuntos
Humanos , Fosfatase 3 de Especificidade Dupla/fisiologia , Neoplasias/enzimologia , Transdução de Sinais , Análise de Sobrevida , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/mortalidade
8.
Biochim Biophys Acta Gen Subj ; 1861(7): 1879-1894, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28389334

RESUMO

BACKGROUND: Radiotherapy causes the regression of many human tumors by increasing DNA damage, and the novel molecular mechanisms underlying the genomic instability leading to cancer progression and metastasis must be elucidated. Atypical dual-specificity phosphatase 3 (DUSP3) has been shown to down-regulate mitogen-activated protein kinases (MAPKs) to control the proliferation and apoptosis of human cancer cells. We have recently identified novel molecular targets of DUSP3 that function in DNA damage response and repair; however, whether DUSP3 affects these processes remains unknown. METHODS: Tumor cell lines in which DUSP3 activity was suppressed by pharmacological inhibitors or a targeted siRNA were exposed to gamma radiation, and proliferation, survival, DNA strand breaks and recombination repair pathways were sequentially analyzed. RESULTS: The combination of reduced DUSP3 activity and gamma irradiation resulted in decreased cellular proliferation and survival and increased cellular senescence compared with the effects of radiation exposure alone. Gamma radiation-induced DNA damage was increased by the loss of DUSP3 activity and correlated with increased levels of phospho-H2AX protein and numbers of ionizing radiation-induced γ-H2AX foci, which were reflected in diminished efficiencies of homologous recombination (HR) and non-homologous end-joining (NHEJ) repair. Similar results were obtained in ATM-deficient cells, in which reduced DUSP3 activity increased radiosensitivity, independent of increased MAPK phosphorylation. CONCLUSION: The loss of DUSP3 activity markedly increases gamma radiation-induced DNA strand breaks, suggesting a potential novel role for DUSP3 in DNA repair. GENERAL SIGNIFICANCE: The radioresistance of tumor cells is effectively reduced by a combination of approaches through the inhibition of DUSPs.


Assuntos
Reparo do DNA , Fosfatase 3 de Especificidade Dupla/fisiologia , Neoplasias/radioterapia , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Tumoral , Dano ao DNA , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Raios gama , Histonas/análise , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA