RESUMO
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Assuntos
Lesões Encefálicas , Dopamina beta-Hidroxilase , Norepinefrina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Masculino , Norepinefrina/metabolismo , Norepinefrina/biossíntese , Lesões Encefálicas/metabolismo , Lesões Encefálicas/induzido quimicamente , Ratos Wistar , Ratos , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos FerrososRESUMO
The effect of PHAR-DBH-Me, a cannabinoid receptor agonist, on different cardiovascular responses in adult male rats was analyzed. The blood pressure was measured directly and indirectly. The coronary flow was measured by Langendorff preparation, and vasomotor responses induced by PHAR-DBH-Me in aortic rings precontracted with phenylephrine (PHEN) were analyzed. The intravenous injection of the compound PHAR-DBH-Me (0.018-185 µg/kg) resulted in decreased blood pressure; maximum effect was observed at the dose of 1,850 µg/kg. A concentration-dependent increase in the coronary flow was observed in a Langendorff preparation. In the aortic rings, with and without endothelium, pre-contracted with PHEN (10-6 M), the addition of PHAR-DBH-Me to the superfusion solution (10-12-10-5 M), produced a vasodilator response, which depends on the concentration and presence of the endothelium. L-NAME inhibited these effects. Addition of CB1 receptor antagonist (AM 251) did not modify the response, while CB2 receptor antagonist (AM630) decreased the potency of relaxation elicited by PHAR-DBH-Me. Indomethacin shifted the curve concentration-response to the left and produced an increase in the magnitude of the maximum endothelium dependent response to this compound. The maximum effect of PHAR-DBH-Me was observed with the concentration of 10-5 M. These results show that PHAR-DBH-Me has a concentration-dependent and endothelium-dependent vasodilator effect through CB2 receptor. This vasodilation is probably mediated by the synthesis/release of NO. On the other hand, it is suggested that PHAR-DBH-Me also induces the release of a vasoconstrictor prostanoid.
RESUMO
Anthropogenic forest fragmentation impacts many aspects of animal behaviour, including feeding ecology. With forests increasingly fragmented in tropical regions due to human development, the proportion of forest edge (≤ 100 m from clear-cut regions) is higher relative to forest interior. Forest edges differ in vegetation from interior, making it important to better understand how anthropogenic edges impact the feeding behaviour of primates such as mantled howler monkeys (Alouatta palliata). We predicted that howler monkeys would feed on higher-quality plant resources, from a larger number of tree families, and from larger trees in forest interior compared to anthropogenic forest edge. We surveyed howler monkey feeding behaviour across forest zones in a fragmented rainforest in Costa Rica, La Suerte Biological Research Station. We observed individual monkeys for 30-minute periods, collecting data on their feeding behaviour and tree use at 2-minute intervals. We measured feeding trees and recorded the plant parts and taxonomy of resources consumed. Monkeys consumed more leaves and fewer stems and fed from a smaller number of tree families in the forest interior, while they consumed fewer leaves and more stems and fed from a larger number of tree families in the forest edge. Monkeys also fed from larger, taller trees in the forest interior than the edge. The differences in howler monkey feeding behaviour between forest zones attest to the impact of human disturbance on howler monkey feeding ecology.
Assuntos
Alouatta/fisiologia , Comportamento Alimentar , Floresta Úmida , Animais , Costa Rica , Flores , Frutas , Folhas de Planta , Caules de Planta , Árvores/crescimento & desenvolvimentoRESUMO
OBJECTIVES: Many group-living primate species have evolved the capacity for some individuals to live alone for part of their lives, but this solitary life stage has rarely been the subject of focused research. The mantled howler monkey (Alouatta palliata) is a social primate species with bisexual dispersal that lives in mixed-sex groups with low male-to-female sex ratios. Consequently, males often spend a long period of their lives as solitary individuals. This study compares the tree use, feeding, and long-distance vocalization behavior of solitary and group-living mantled howler monkey males living within a fragmented rainforest in Costa Rica, La Suerte Biological Research Station. Based on differences in competitive ability between solitary and group-living males, we predicted that lone males would be found in significantly smaller feeding and resting trees, consume more low-quality foods, and produce shorter howling bouts made at lower rates than group-living males. MATERIALS AND METHODS: We collected data on tree use and feeding during 30-min focal samples on male focal animals, recording data at 2-min intervals. We measured the trees in which the monkeys fed and rested for two or more intervals, and recorded the plant parts consumed. We recorded howling behavior using all-occurrences sampling. RESULTS: Lone males used significantly smaller feeding and resting trees, consumed more low-quality foods, and howled at lower rates but had longer howling bouts triggered by anthropogenic noise more than group-living males. DISCUSSION: Our results demonstrate that lone males differ in their behavioral ecology compared to group-living males, thus improving understanding of the solitary male life stage in primates.
Assuntos
Alouatta/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Animais , Antropologia Física , Costa Rica , Comportamento Alimentar/fisiologia , Masculino , Floresta ÚmidaRESUMO
This paper presents a novel approach for estimating the height of individual trees in secondary forests at two study sites: Manaus (central Amazon) and Santarém (eastern Amazon) in the Brazilian Amazon region. The approach consists of adjusting tree height-diameter at breast height (H:DBH) models in each study site by ecological species groups: pioneers, early secondary, and late secondary. Overall, the DBH and corresponding height (H) of 1,178 individual trees were measured during two field campaigns: August 2014 in Manaus and September 2015 in Santarém. We tested the five most commonly used log-linear and nonlinear H:DBH models, as determined by the available literature. The hyperbolic model: H = a.DBH/(b+DBH) was found to present the best fit when evaluated using validation data. Significant differences in the fitted parameters were found between pioneer and secondary species from Manaus and Santarém by F-test, meaning that site-specific and also ecological-group H:DBH models should be used to more accurately predict H as a function of DBH. This novel approach provides specific equations to estimate height of secondary forest trees for particular sites and ecological species groups. The presented set of equations will allow better biomass and carbon stock estimates in secondary forests of the Brazilian Amazon.
Este trabalho apresenta uma nova abordagem para a estimativa de altura de árvores em florestas secundárias em duas áreas de estudo na Amazônia brasileira: Manaus (Amazônia central) e Santarém (Amazônia oriental). A abordagem consistiu em ajustar modelos hipsométricos separados por área de estudo e grupos ecológicos de espécies: pioneiras, secundárias iniciais e secundárias tardias. No total, 1178 árvores foram medidas em diâmetro e altura em duas etapas de campo: agosto de 2014 em Manaus e Setembro de 2015 em Santarém. Foram testados cinco modelos log-lineares e não lineares mais utilizados na literatura. O modelo hiperbólico: H = a.D/(b+D) foi o que apresentou o melhor ajuste quando avaliado com os dados de validação. Diferenças significativas nos parâmetros de ajuste foram observadas entre as espécies pioneiras e secundárias de Manaus e Santarém pelo teste F, significando que equações específicas por grupos ecológicos e área de estudo deveriam ser utilizadas para estimar a altura (H) a partir do diâmetro (D) com maior acurácia. Esta nova abordagem fornece equações específicas para localidade e grupo ecológico, para estimar a altura das árvores em florestas secundárias. O conjunto de equações desenvolvidas permitirá melhorar as estimativas de biomassa e a quantificação dos estoques de carbono nas florestas secundárias da Amazônia brasileira.
Assuntos
Biometria/métodos , Estatística como Assunto , Árvores/anatomia & histologia , Dinâmica não Linear , Modelos LinearesRESUMO
This paper presents a novel approach for estimating the height of individual trees in secondary forests at two study sites: Manaus (central Amazon) and Santarém (eastern Amazon) in the Brazilian Amazon region. The approach consists of adjusting tree height-diameter at breast height (H:DBH) models in each study site by ecological species groups: pioneers, early secondary, and late secondary. Overall, the DBH and corresponding height (H) of 1,178 individual trees were measured during two field campaigns: August 2014 in Manaus and September 2015 in Santarém. We tested the five most commonly used log-linear and nonlinear H:DBH models, as determined by the available literature. The hyperbolic model: H = a.DBH/(b+DBH) was found to present the best fit when evaluated using validation data. Significant differences in the fitted parameters were found between pioneer and secondary species from Manaus and Santarém by F-test, meaning that site-specific and also ecological-group H:DBH models should be used to more accurately predict H as a function of DBH. This novel approach provides specific equations to estimate height of secondary forest trees for particular sites and ecological species groups. The presented set of equations will allow better biomass and carbon stock estimates in secondary forests of the Brazilian Amazon.(AU)
Este trabalho apresenta uma nova abordagem para a estimativa de altura de árvores em florestas secundárias em duas áreas de estudo na Amazônia brasileira: Manaus (Amazônia central) e Santarém (Amazônia oriental). A abordagem consistiu em ajustar modelos hipsométricos separados por área de estudo e grupos ecológicos de espécies: pioneiras, secundárias iniciais e secundárias tardias. No total, 1178 árvores foram medidas em diâmetro e altura em duas etapas de campo: agosto de 2014 em Manaus e Setembro de 2015 em Santarém. Foram testados cinco modelos log-lineares e não lineares mais utilizados na literatura. O modelo hiperbólico: H = a.D/(b+D) foi o que apresentou o melhor ajuste quando avaliado com os dados de validação. Diferenças significativas nos parâmetros de ajuste foram observadas entre as espécies pioneiras e secundárias de Manaus e Santarém pelo teste F, significando que equações específicas por grupos ecológicos e área de estudo deveriam ser utilizadas para estimar a altura (H) a partir do diâmetro (D) com maior acurácia. Esta nova abordagem fornece equações específicas para localidade e grupo ecológico, para estimar a altura das árvores em florestas secundárias. O conjunto de equações desenvolvidas permitirá melhorar as estimativas de biomassa e a quantificação dos estoques de carbono nas florestas secundárias da Amazônia brasileira.(AU)
Assuntos
Árvores/anatomia & histologia , Estatística como Assunto , Biometria/métodos , Modelos Lineares , Dinâmica não LinearRESUMO
This paper presents a practical application of a technique that uses a vertical optical flow with a fisheye camera to generate dense point clouds from a single planimetric station. Accurate data can be extracted to enable the measurement of tree trunks or branches. The images that are collected with this technique can be oriented in photogrammetric software (using fisheye models) and used to generate dense point clouds, provided that some constraints on the camera positions are adopted. A set of images was captured in a forest plot in the experiments. Weighted geometric constraints were imposed in the photogrammetric software to calculate the image orientation, perform dense image matching, and accurately generate a 3D point cloud. The tree trunks in the scenes were reconstructed and mapped in a local reference system. The accuracy assessment was based on differences between measured and estimated trunk diameters at different heights. Trunk sections from an image-based point cloud were also compared to the corresponding sections that were extracted from a dense terrestrial laser scanning (TLS) point cloud. Cylindrical fitting of the trunk sections allowed the assessment of the accuracies of the trunk geometric shapes in both clouds. The average difference between the cylinders that were fitted to the photogrammetric cloud and those to the TLS cloud was less than 1 cm, which indicates the potential of the proposed technique. The point densities that were obtained with vertical optical scanning were 1/3 less than those that were obtained with TLS. However, the point density can be improved by using higher resolution cameras.
RESUMO
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and leaf dark respiration (Rd ). The raw net photosynthesis by intercellular CO2 (A/Ci ) data used to calculate Vcmax , Jmax , and Vpmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange.
Assuntos
Carbono/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono , América Central , Fotossíntese , Ribulose-Bifosfato Carboxilase , ÁrvoresRESUMO
Los sistemas de uso del suelo con leñosas perennes, como cacaotales, mitigan el cambio climático, al capturar CO2 atmosférico. El objetivo del estudio fue estimar la fijación de carbono en biomasa total en los sistemas de producción de cacao, dominantes del Tolima, Colombia. El estudio, se realizó en Rovira y Falan, empleando un diseño experimental, completamente al azar, con seis sistemas de producción de cacao: monocultivo, sistema agroforestal (SAF) con maderables, SAF con aguacate, SAF con cítricos, SAF con frutales, y SAF con maderables y frutales y tres repeticiones. Se establecieron dos parcelas de muestreo rectangulares, de 1.000m² por unidad de muestreo, donde se identificaron y midieron los árboles con dap ⥠10cm (diámetro del tronco a la altura del pecho -dap- y altura total -ht). Se establecieron dos sub-parcelas de 256m², por parcela principal, para medir arbustos de cacao: ht y diámetro del tronco, a 30 cm de altura (D30). Se emplearon modelos alométricos, para estimar la biomasa. El SAF con maderables y frutales y SAF con frutales presentaron la mayor biomasa total (122,0 y 72,5t/ ha). En el SAF con maderables y frutales, se evidenció el mayor almacenamiento de carbono, con 61,0t C/ha, mientras que la mayor tasa de fijación de carbono fue de 17,7t/ha/ año, para el SAF con cítricos. Los resultados sugieren que la producción de cacao, que incluyen otras especies vegetales, diversifica la producción e incrementa la seguridad alimentaria y la generación de servicios ambientales, tal como la captura de carbono atmosférico.
The land use systems with woody perennials species, such as cacao plantations, mitigate climate change by capturing atmospheric CO2. The aim of the study was to estimate the fixation of atmospheric carbon in total biomass in the most dominant cocoa production systems in Tolima, Colombia. The study was carried out in Rovira and Falan using a completely randomized experimental design with six cocoa production systems: monoculture, agroforestry system (SAF) with timber trees, SAF with avocado, SAF with citrus species, SAF with fruit trees and SAF with timber and fruit species with three replications. Two rectangular sampling plots 1000m² were established by sampling unit where trees with diameter of trunk at breast height (dbh) ⥠10cm were identified and measured (dbh and total height - th). Two subplots of 256 m² by main plot, for measuring cocoa bushes were established: ht and trunk diameter at 30cm height (D30). Allometric models to estimate biomass were used. The AFS with timber and fruit species and AFS with fruit species had the greatest biomass (122.0 and 72.5t/ha). In the AFS with timber and fruit species presented the highest carbon storage in biomass with 61.0t C/ha; whereas the greatest carbon fixation rate was 17.7 t/ha/year in AFS with citrus species. The results suggest that cocoa plantations that include other plant species diversify the production and increase food security and generation of environmental services, such as capturing atmospheric carbon.
RESUMO
KEY POINTS: Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine ß-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. ABSTRACT: Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine ß-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction.
Assuntos
Fibras Autônomas Pré-Ganglionares/fisiologia , Insuficiência Cardíaca/fisiopatologia , Neurônios/fisiologia , Condicionamento Físico Animal , Nervo Vago/fisiologia , Animais , Pressão Sanguínea , Coração/inervação , Frequência Cardíaca , Masculino , Ratos , Ratos Wistar , Nervo Vago/citologiaRESUMO
Diameter at breast height (DBH) is the simplest, most common and most important tree dimension in forest inventory and is closely correlated with wood volume, height and biomass. In this study, a number of linear and nonlinear models predicting diameter at breast height from stump diameter were developed and evaluated for Oriental beech (Fagus orientalisLipsky) stands located in the forest region of Ayanck, in the northeast of Turkey. A set of 1,501 pairs of diameter at breast height-stump measurements, originating from 70 sample plots of even-aged Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 sample plots) was used to fit a number of linear and nonlinear model parameters; the remaining 341 trees in 15 sample plots were randomly reserved for model validation and calibration response. The power model data set was found to produce the most satisfactory fits with the Adjusted Coefficient of Determination, R2adj (0.990), Root Mean Square Error, RMSE (1.25), Akaikes Information Criterion, AIC (3820.5), Schwarzs Bayesian Information Criterion, BIC (3837.2), and Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2adj(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better fitting and precise predictions for DBH from stump diameter than the conventional nonlinear fixed effect model structures for this model. The calibration response including tree DBH and stump diameter measurements of the four largest trees in a calibrated sample plot in calibration produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage.(AU)
Assuntos
Modelos Lineares , Dinâmica não Linear , Fagus/anatomia & histologiaRESUMO
Diameter at breast height (DBH) is the simplest, most common and most important tree dimension in forest inventory and is closely correlated with wood volume, height and biomass. In this study, a number of linear and nonlinear models predicting diameter at breast height from stump diameter were developed and evaluated for Oriental beech (Fagus orientalisLipsky) stands located in the forest region of Ayanck, in the northeast of Turkey. A set of 1,501 pairs of diameter at breast height-stump measurements, originating from 70 sample plots of even-aged Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 sample plots) was used to fit a number of linear and nonlinear model parameters; the remaining 341 trees in 15 sample plots were randomly reserved for model validation and calibration response. The power model data set was found to produce the most satisfactory fits with the Adjusted Coefficient of Determination, R2adj (0.990), Root Mean Square Error, RMSE (1.25), Akaikes Information Criterion, AIC (3820.5), Schwarzs Bayesian Information Criterion, BIC (3837.2), and Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2adj(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better fitting and precise predictions for DBH from stump diameter than the conventional nonlinear fixed effect model structures for this model. The calibration response including tree DBH and stump diameter measurements of the four largest trees in a calibrated sample plot in calibration produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage.
Assuntos
Dinâmica não Linear , Fagus/anatomia & histologia , Modelos LinearesRESUMO
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.