Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175226

RESUMO

The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/radioterapia , Comunicação Celular , Antígenos de Neoplasias , Vesículas Extracelulares/patologia , Imunoterapia , Microambiente Tumoral
2.
Trends Psychiatry Psychother ; 45: e20220576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527709

RESUMO

BACKGROUND: Emerging evidence indicates that inflammation plays an important role as a mechanism underlying mental disorders. However, most of the research on inflammatory mechanisms focuses on serum levels of interleukins and very few studies have investigated molecules that initiate and expand innate immune pathways such as damage-associated molecular patterns (DAMPs). OBJECTIVES: This study investigated the levels of DAMPs among patients diagnosed with major depressive disorder (MDD), bipolar disorder (BD) I and II, schizophrenia (SCZ), and generalized anxiety disorder (GAD). We quantified serum levels of heat shock proteins (HSPs) 70 and 60 and of S100 calcium-binding protein B (S100B). METHODS: Serum levels of HSP70, HSP60, and S100B were assessed in a sample of participants with psychiatric disorders (n = 191) and a control group (CT) (n = 59) using enzyme-linked immunosorbent assay (ELISA). RESULTS: Serum HSP70 concentrations were significantly higher in the MDD group compared to the CT, SCZ, and BD groups. The GAD group had higher concentrations of HSP70 than the SCZ group. Exploring associations with medications, lithium (p = 0.003) and clozapine (p = 0.028) were associated with lower HSP70 levels. Approximately 64% of the sample had DAMPs levels below the limits of detection indicated by the respective ELISA kit. CONCLUSION: This was the first study to assess DAMPs levels in a transdiagnostic sample. Our preliminary findings suggest that HSP70 may be associated with MDD pathophysiology. Medications such as lithium and clozapine were associated with lower HSP70 levels in BD and SCZ groups, respectively. Therefore, it is worth mentioning that all participants were medicated and many psychotropic drugs exert an anti-inflammatory effect, possibly reducing the signs of inflammation.


Assuntos
Transtorno Bipolar , Clozapina , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/metabolismo , Lítio/uso terapêutico , Clozapina/uso terapêutico , Transtorno Bipolar/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/uso terapêutico , Inflamação
3.
Front Immunol ; 14: 1259879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38439942

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1ß, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Inflamação , Vacinação , Alarminas
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203628

RESUMO

Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.


Assuntos
Erva-de-Passarinho , Prosopis , Alarminas , DNA , Peróxido de Hidrogênio , Árvores
5.
Trends Psychiatry Psychother. (Online) ; 45: e20220576, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1523034

RESUMO

Abstract Background Emerging evidence indicates that inflammation plays an important role as a mechanism underlying mental disorders. However, most of the research on inflammatory mechanisms focuses on serum levels of interleukins and very few studies have investigated molecules that initiate and expand innate immune pathways such as damage-associated molecular patterns (DAMPs). Objectives This study investigated the levels of DAMPs among patients diagnosed with major depressive disorder (MDD), bipolar disorder (BD) I and II, schizophrenia (SCZ), and generalized anxiety disorder (GAD). We quantified serum levels of heat shock proteins (HSPs) 70 and 60 and of S100 calcium-binding protein B (S100B). Methods Serum levels of HSP70, HSP60, and S100B were assessed in a sample of participants with psychiatric disorders (n = 191) and a control group (CT) (n = 59) using enzyme-linked immunosorbent assay (ELISA). Results Serum HSP70 concentrations were significantly higher in the MDD group compared to the CT, SCZ, and BD groups. The GAD group had higher concentrations of HSP70 than the SCZ group. Exploring associations with medications, lithium (p = 0.003) and clozapine (p = 0.028) were associated with lower HSP70 levels. Approximately 64% of the sample had DAMPs levels below the limits of detection indicated by the respective ELISA kit. Conclusion This was the first study to assess DAMPs levels in a transdiagnostic sample. Our preliminary findings suggest that HSP70 may be associated with MDD pathophysiology. Medications such as lithium and clozapine were associated with lower HSP70 levels in BD and SCZ groups, respectively. Therefore, it is worth mentioning that all participants were medicated and many psychotropic drugs exert an anti-inflammatory effect, possibly reducing the signs of inflammation.

6.
J Neuroimmunol ; 371: 577951, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994946

RESUMO

Depression is a heterogeneous mental disorder characterized by feelings of sadness and loss of interest that render the subject unable to handle basic daily activities such as sleeping, eating, or working. Neurobiological traits leading to depression include genetic background, early life abuse, life stressors, and systemic and central inflammatory profiles. Several clinical and preclinical reports documented that depression shows an increase in pro-inflammatory markers such as interleukin (IL-)1ß, IL-6, IL-12, tumor necrosis factor (TNF), and interferon (IFN)-γ; and a decrease in anti-inflammatory IL-4, IL-10, and transforming growth factor (TGF)-ß species. Inflammatory activation may trigger and maintain depression. Dynamic crosstalk between the peripheral immune system and the central nervous system (CNS) such as activated endothelial cells, monocytes, monocyte-derived dendritic cells, macrophages, T cells, and microglia has been proposed as a leading cause of neuroinflammation. Notably, pro-inflammatory cytokines disrupt the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic, noradrenergic, dopaminergic, and glutamatergic neurotransmission. While still under investigation, peripheral cytokines can engage brain pathways and affect the central synthesis of HPA hormones and neurotransmitters through several mechanisms such as activation of the vagus nerve, increasing the permeability of the blood-brain barrier (BBB), altered cytokines transport systems, and engaging toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). However, physiological mechanisms that favor time-dependent central inflammation before or during illness are not totally understood. This review will provide preclinical and clinical evidence of DAMPs and the BBB permeability as contributors to depression and neuroinflammation. We will also discuss pharmacologic approaches that could potentially modulate DAMPs and BBB permeability for future interventions against major depression.


Assuntos
Alarminas , Barreira Hematoencefálica , Barreira Hematoencefálica/patologia , Citocinas/metabolismo , Depressão , Células Endoteliais/metabolismo , Humanos , Doenças Neuroinflamatórias , Permeabilidade
7.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015189

RESUMO

Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.

8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805888

RESUMO

Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.


Assuntos
Melanoma , Monócitos , Diferenciação Celular , Citocinas/metabolismo , Células Dendríticas , Haptoglobinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Melanoma/metabolismo , Monócitos/metabolismo , Fenótipo , Proteômica
9.
Toxins (Basel) ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822585

RESUMO

In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.


Assuntos
Antivenenos/administração & dosagem , Vesícula/metabolismo , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/complicações , Animais , Antivenenos/metabolismo , Bothrops , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Feminino , Humanos , Masculino , Proteômica , Mordeduras de Serpentes/terapia
10.
Biology (Basel) ; 10(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681122

RESUMO

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.

11.
Autoimmun Rev ; 20(8): 102867, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34118452

RESUMO

Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.


Assuntos
Síndrome de Sjogren , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Inflamação/metabolismo , Mitocôndrias
12.
Immunotherapy ; 13(4): 309-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33397152

RESUMO

Aim: Whole dead tumor cells can be used as antigen source and the induction of protective immune response could be enhanced by damage-associated molecular patterns. Materials & methods: We generated whole dead tumor cells called B16-immunogenic cell bodies (ICBs) from B16 melanoma cells by nutrient starvation and evaluated the in vivo antitumor effect of B16-ICBs plus ATP and polymyxin B (PMB). Results: The subcutaneous immunization with B16-ICBs + PMB + ATP a 50% of tumor-free animals and induced a significant delay in tumor growth in a prophylactic approach. These results correlated with maturation of bone marrow-derived dendritic cells and activation of T CD8+ lymphocytes in vitro. Conclusion: Altogether, ICB + ATP + PMB is efficient in inducing the antitumor efficacy of the whole dead tumor cells vaccine.


Assuntos
Trifosfato de Adenosina/imunologia , Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Polimixina B/imunologia , Trifosfato de Adenosina/administração & dosagem , Alarminas/administração & dosagem , Alarminas/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Antígenos CD40/metabolismo , Vacinas Anticâncer/administração & dosagem , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunização , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Polimixina B/administração & dosagem , Baço/imunologia , Células Tumorais Cultivadas
13.
Toxins, v. 13, n. 11, 800, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4013

RESUMO

In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.

14.
World Allergy Organ J ; 13(11): 100476, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33072240

RESUMO

INTRODUCTION: In light of the current COVID-19 pandemic, during which the world is confronted with a new, highly contagious virus that suppresses innate immunity as one of its initial virulence mechanisms, thus escaping from first-line human defense mechanisms, enhancing innate immunity seems a good preventive strategy. METHODS: Without the intention to write an official systematic review, but more to give an overview of possible strategies, in this review article we discuss several interventions that might stimulate innate immunity and thus our defense against (viral) respiratory tract infections. Some of these interventions can also stimulate the adaptive T- and B-cell responses, but our main focus is on the innate part of immunity. We divide the reviewed interventions into: 1) lifestyle related (exercise, >7 h sleep, forest walking, meditation/mindfulness, vitamin supplementation); 2) Non-specific immune stimulants (letting fever advance, bacterial vaccines, probiotics, dialyzable leukocyte extract, pidotimod), and 3) specific vaccines with heterologous effect (BCG vaccine, mumps-measles-rubeola vaccine, etc). RESULTS: For each of these interventions we briefly comment on their definition, possible mechanisms and evidence of clinical efficacy or lack of it, especially focusing on respiratory tract infections, viral infections, and eventually a reduced mortality in severe respiratory infections in the intensive care unit. At the end, a summary table demonstrates the best trials supporting (or not) clinical evidence. CONCLUSION: Several interventions have some degree of evidence for enhancing the innate immune response and thus conveying possible benefit, but specific trials in COVID-19 should be conducted to support solid recommendations.

15.
Front Immunol ; 11: 1822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983090

RESUMO

Innate immunity is one of the main protection mechanisms against viral infections, but how this system works at the maternal-fetal interface, especially during HIV infection, is still poorly known. In this study, we investigated the relationship between pregnancy and innate mechanisms associated with HIV immunity by evaluating the expression of DAMPs, inflammasome components and type I/III IFNs in placenta and serum samples from HIV-infected mothers and exposed newborns. Our results showed that most of these factors, including HMGB1, IL-1, and IFN, were increased in placental villi from HIV-infected mothers. Curiously, however, these factors were simultaneously repressed in serum from HIV-infected mothers and their exposed newborns, suggesting that pregnancy could restrict HIV immune activation systemically but preserve the immune response at the placental level. An effective local antiviral status associated with a suppressed inflammatory environment can balance the maternal immune response, promoting homeostasis for fetal development and protection against HIV infection in neonates.


Assuntos
Alarminas/metabolismo , Infecções por HIV/imunologia , HIV/imunologia , Imunidade Inata , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Mediadores da Inflamação/metabolismo , Placenta/imunologia , Adolescente , Adulto , Alarminas/genética , Brasil , Feminino , Sangue Fetal/imunologia , Sangue Fetal/virologia , HIV/patogenicidade , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Recém-Nascido , Interferons/metabolismo , Interleucina-1/metabolismo , Mães , Placenta/metabolismo , Placenta/virologia , Gravidez , Regulação para Cima , Adulto Jovem
16.
BMC Cancer ; 20(1): 647, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660440

RESUMO

BACKGROUND: IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells. METHODS: Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells. RESULTS: ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism. CONCLUSIONS: ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs' release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.


Assuntos
Alarminas/metabolismo , Antineoplásicos/farmacologia , Autofagossomos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Transferência/administração & dosagem , Animais , Apoptose , Bovinos , Ciclo Celular , Proliferação de Células , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/patologia , Estresse Oxidativo
17.
BMC Cancer ; 20(1): 474, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456685

RESUMO

BACKGROUND: Chemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of ATP and the secretion of High Mobility Group Box 1 (HMGB1). METHODS: Here, we investigated the levels of ICD-associated DAMPs induced by chemotherapeutics commonly used in the clinical practice of non-small cell lung cancer (NSCLC) and the association of these DAMPs with apoptosis and autophagy. A549 human lung adenocarcinoma cells were treated with clinically relevant doses of cisplatin, carboplatin, etoposide, paclitaxel and gemcitabine. We assessed ICD-associated DAMPs, cell viability, apoptosis and autophagy in an integrated way. RESULTS: Cisplatin and its combination with etoposide induced the highest levels of apoptosis, while etoposide was the less pro-apoptotic treatment. Cisplatin also induced the highest levels of ICD-associated DAMPs, which was not incremented by co-treatments. Etoposide induced the lower levels of ICD and the highest levels of autophagy, suggesting that the cytoprotective role of autophagy is dominant in relation to its pro-ICD role. High levels of CRT were associated with better prognosis in TCGA databank. In an integrative analysis we found a strong positive correlation between DAMPs and apoptosis, and a negative correlation between cell number and ICD-associated DAMPs as well as between autophagy and apoptosis markers. We also purpose a mathematical integration of ICD-associated DAMPs in an index (IndImunnog) that may represent with greater biological relevance this process. Cisplatin-treated cells showed the highest IndImmunog, while etoposide was the less immunogenic and the more pro-autophagic treatment. CONCLUSIONS: Cisplatin alone induced the highest levels of ICD-associated DAMPs, so that its combination with immunotherapy may be a promising therapeutic strategy in NSCLC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Alarminas/metabolismo , Antineoplásicos/farmacologia , Morte Celular Imunogênica , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Trifosfato de Adenosina/metabolismo , Alarminas/efeitos dos fármacos , Apoptose , Autofagia , Calreticulina/metabolismo , Carboplatina/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Etoposídeo/farmacologia , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Prognóstico , Gencitabina
18.
World Allergy Organ J ; 13(3): 100101, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32180891

RESUMO

Urticaria is defined as the sudden appearance of erythematous, itchy wheals of variable size, with or without angioedema (AE) (swelling of the deeper layers of the skin). Its classification depends on time course of symptoms and the presence of eliciting factors. When it lasts less than 6 weeks it is classified as acute urticaria (AU), and if the symptoms persist for more than 6 weeks, it is classified as chronic urticaria (CU). Current International Guidelines also classify CU as chronic spontaneous urticaria (CSU) and inducible urticarial, according to the absence or presence of environmental triggering factors. CSU is defined as urticaria and/or angioedema in which there is no evidence of a specific eliciting factor. CSU is associated with autoimmunity in 30-45% of the cases, sharing some immunological mechanisms with other autoimmune diseases, and is associated with autoimmune thyroid disease (ATD) in about 4.3%-57.4% patients. Several studies suggest that adequate therapy with anti-thyroid drugs or levothyroxine in early stages of ATD and CSU, may help to remit the latter; but there is still a lack of double-blind, placebo-controlled studies that support this hypothesis in patients without abnormal thyroid hormone levels. The objective of this review is to describe the pathophysiology of chronic spontaneous urticaria and its association with autoimmune thyroid disease.

19.
Front Oncol ; 10: 617109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33604297

RESUMO

Cachexia is a syndrome that affects the entire organism and presents a variable plethora of symptoms in patients, always associated with continuous and involuntary degradation of skeletal muscle mass and function loss. In cancer, this syndrome occurs in 50% of all patients, while prevalence increases to 80% as the disease worsens, reducing quality of life, treatment tolerance, therapeutic response, and survival. Both chronic systemic inflammation and immunosuppression, paradoxically, correspond to important features in cachexia patients. Systemic inflammation in cachexia is fueled by the interaction between tumor and peripheral tissues with significant involvement of infiltrating immune cells, both in the peripheral tissues and in the tumor itself. Autophagy, as a process of regulating cellular metabolism and homeostasis, can interfere with the metabolic profile in the tumor microenvironment. Under a scenario of balanced autophagy in the tumor microenvironment, the infiltrating immune cells control cytokine production and secretion. On the other hand, when autophagy is unbalanced or dysfunctional within the tumor microenvironment, there is an impairment in the regulation of immune cell's inflammatory phenotype. The inflammatory phenotype upregulates metabolic consumption and cytokine production, not only in the tumor microenvironment but also in other tissues and organs of the host. We propose that cachexia-related chronic inflammation can be, at least, partly associated with the failure of autophagic processes in tumor cells. Autophagy endangers tumor cell viability by producing immunogenic tumor antigens, thus eliciting the immune response necessary to counteract tumor progression, while preventing the establishment of inflammation, a hallmark of cachexia. Comprehensive understanding of this complex functional dichotomy may enhance cancer treatment response and prevent/mitigate cancer cachexia. This review summarizes the recent available literature regarding the role of autophagy within the tumor microenvironment and the consequences eliciting the development of cancer cachexia.

20.
Front Immunol ; 10: 709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024546

RESUMO

The release of the prototypic DAMP High Mobility Group Box 1 (HMGB1) into extracellular environment and its binding to the Receptor for Advanced Glycation End Products (RAGE) has been described to trigger sterile inflammation and regulate healing outcome. However, their role on host response to Ti-based biomaterials and in the subsequent osseointegration remains unexplored. In this study, HMGB1 and RAGE inhibition in the Ti-mediated osseointegration were investigated in C57Bl/6 mice. C57Bl/6 mice received a Ti-device implantation (Ti-screw in the edentulous alveolar crest and a Ti-disc in the subcutaneous tissue) and were evaluated by microscopic (microCT [bone] and histology [bone and subcutaneous]) and molecular methods (ELISA, PCR array) during 3, 7, 14, and 21 days. Mice were divided into 4 groups: Control (no treatment); GZA (IP injection of Glycyrrhizic Acid for HMGB1 inhibition, 4 mg/Kg/day); RAP (IP injection of RAGE Antagonistic Peptide, 4 mg/Kg/day), and vehicle controls (1.5% DMSO solution for GZA and 0.9% saline solution for RAP); treatments were given at all experimental time points, starting 1 day before surgeries. HMGB1 was detected in the Ti-implantation sites, adsorbed to the screws/discs. In Control and vehicle groups, osseointegration was characterized by a slight inflammatory response at early time points, followed by a gradual bone apposition and matrix maturation at late time points. The inhibition of HMGB1 or RAGE impaired the osseointegration, affecting the dynamics of mineralized and organic bone matrix, and resulting in a foreign body reaction, with persistence of macrophages, necrotic bone, and foreign body giant cells until later time points. While Control samples were characterized by a balance between M1 and M2-type response in bone and subcutaneous sites of implantation, and also MSC markers, the inhibition of HMGB1 or RAGE caused a higher expression M1 markers and pro-inflammatory cytokines, as well chemokines and receptors for macrophage migration until later time points. In conclusion, HMGB1 and RAGE have a marked role in the osseointegration, evidenced by their influence on host inflammatory immune response, which includes macrophages migration and M1/M2 response, MSC markers expression, which collectively modulate bone matrix deposition and osseointegration outcome.


Assuntos
Antígenos de Neoplasias/metabolismo , Artroplastia/métodos , Materiais Biocompatíveis/metabolismo , Proteínas HMGB/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Titânio/metabolismo , Animais , Materiais Biocompatíveis/química , Biomarcadores/metabolismo , Matriz Óssea/efeitos dos fármacos , Movimento Celular , Ácido Glicirrízico/administração & dosagem , Proteínas HMGB/antagonistas & inibidores , Humanos , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Osseointegração , Peptídeos/administração & dosagem , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA