Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050060

RESUMO

Wounding induces phenolic biosynthesis in broccoli. However, there is scarce information about the physiological and molecular mechanisms governing this stress response. In the present study, a chemical-genetics approach was used to elucidate the role of reactive oxygen species (ROS), jasmonic acid (JA), and ethylene (ET) as stress-signaling molecules in the wound-induced phenolic biosynthesis in broccoli. Wounding activated the biosynthesis of ET and JA. Likewise, the wound-induced biosynthesis of ET and JA was regulated by ROS. JA activated primary metabolism, whereas the three signaling molecules activated phenylpropanoid metabolism. The signaling molecules inhibited the wound-induced activation of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) gene, which is involved in caffeoylquinic acids biosynthesis, and the main phenolics accumulated in wounded broccoli, suggesting that an alternative caffeoylquinic biosynthesis pathway is activated in the tissue due to wounding. ROS mediated the biosynthesis of most individual phenolic compounds evaluated. In conclusion, ROS, ET, and JA are essential in activating broccoli's primary and secondary metabolism, resulting in phenolic accumulation.

2.
Int Urol Nephrol ; 55(6): 1501-1508, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36583822

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is one of the main complications of COVID-19 caused by SARS-CoV-2. This study aimed to evaluate the incidence of AKI in Brazilian hospitalized patients diagnosed with COVID-19 and identify the risk factors associated with its onset and those associated with its prognosis. METHODS: A prospective cohort study of hospitalized patients diagnosed with COVID-19 at a public and tertiary university hospital in São Paulo from March to December 2020. RESULTS: There were 347 patients hospitalized with COVID-19, 52.4% were admitted to the intensive care unit (ICU) and 47.6% were admitted to the wards. The overall incidence of AKI was 46.4%, more frequent in the ICU (68.1% vs 22.4, p < 0.01) and the overall mortality was 36.1%. Acute kidney replacement therapy was indicated in 46.6% of patients with AKI. In the general population, the factors associated with AKI were older age (OR 1.03, CI 1-1.05, p < 0.05), mechanical ventilation (OR 1.23, CI 1.06-1.83, p < 0.05), presence of proteinuria (OR 1.46, CI 1.22-1.93, p < 0.05), and use of vasoactive drugs (OR 1.26, CI 1.07-1.92, p < 0.05). Mortality was higher in the elderly (OR 1.08, CI 1.04-1.11, p < 0.05), in those with AKI (OR 1.12, CI 1.02-2.05, p < 0.05), particularly KDIGO stage 3 AKI (OR 1.10, CI 1.22-2.05, p < 0.05) and in need of mechanical ventilation (OR 1.13, CI 1.03-1.60, p < 0.05). CONCLUSION: AKI was frequent in hospitalized patients with COVID-19 and the factors associated with its development were older age, mechanical ventilation, use of vasoactive drugs, and presence of proteinuria, being a risk factor for death.


Assuntos
Injúria Renal Aguda , COVID-19 , Doenças Transmissíveis , Humanos , Idoso , COVID-19/complicações , COVID-19/epidemiologia , SARS-CoV-2 , Brasil/epidemiologia , Estudos Prospectivos , Incidência , Estudos Retrospectivos , Prognóstico , Doenças Transmissíveis/complicações , Unidades de Terapia Intensiva , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Fatores de Risco , Mortalidade Hospitalar , Proteinúria/complicações
4.
Curr Oncol ; 28(4): 3058-3070, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436033

RESUMO

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH expression and signal transduction mechanisms into the complex tumor microenvironment. In addition, we highlight the associations between tumor and stromal cells as possible prognostic markers that could be targeted with new therapeutic strategies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Astrócitos , Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Transdução de Sinais , Microambiente Tumoral
5.
Electron. j. biotechnol ; Electron. j. biotechnol;50: 59-67, Mar. 2021. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1292412

RESUMO

BACKGROUND: Cross talk of tumor­immune cells at the gene expression level has been an area of intense research. However, it is largely unknown at the alternative splicing level which has been found to play important roles in the tumor­immune microenvironment. RESULTS: Here, we re-exploited one transcriptomic dataset to gain insight into tumor­immune interactions from the point of AS level. Our results showed that the AS profiles of triple-negative breast cancer cells co-cultured with activated T cells were significantly changed but not Estrogen receptor positive cells. We further suggested that the alteration in AS profiles in triple-negative breast cancer cells was largely caused by activated T cells rather than paracrine factors from activated T cells. Biological pathway analyses showed that translation initiation and tRNA aminoacylation pathways were most disturbed with T cell treatment. We also established an approach largely based on the AS factor­AS events associations and identified LSM7, an alternative splicing factor, may be responsible for the major altered events. CONCLUSIONS: Our study reveals the notable differences of response to T cells among breast cancer types which may facilitate the development or improvement of tumor immunotherapy.


Assuntos
Linfócitos T , Neoplasias de Mama Triplo Negativas , Iniciação Traducional da Cadeia Peptídica , Expressão Gênica , Processamento Alternativo , Técnicas de Cultura de Células , Receptor Cross-Talk , Aminoacilação de RNA de Transferência , Transcriptoma , Imunoterapia
6.
Heliyon ; 6(9): e05008, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005807

RESUMO

Salinity is still one of the main factors that limit the growth and production of crops. However, currently, hydrogen peroxide (H2O2) priming has become a promising technique to alleviate the deleterious effects caused by salt. Therefore, this study aimed to test different leaf spraying strategies with H2O2 for acclimation of sunflower plants to salt stress, identifying the main physiological and biochemical changes involved in this process. The experiment was conducted in a completely randomized design, with four replications. Initially, four concentrations of H2O2 were tested (0.1; 1; 10 and 100 mM) associated with different applications: 1AP - one application (48 h before exposure to NaCl); 2AP - two applications (1AP + one application 7 days after exposure to NaCl) and 3AP - three applications (2AP + one application 14 days after exposure to NaCl), besides this two reference treatments were also added: control (absence of NaCl and absence of H2O2) and salt control (presence of 100 mM of NaCl and absence of H2O2). The experiment was conducted in hydroponic system containing Furlani's nutrient solution. Salt stress reduced the growth of sunflower plants, however, the H2O2 priming through leaf spraying was able to reduce the deleterious effects caused by salt, especially in the 1 mM H2O2 treatment with one application. H2O2 acts as a metabolic signal assisting in the maintenance of ionic and redox homeostasis, and consequently increasing the tolerance of plants to salt stress.

7.
Proc Natl Acad Sci U S A ; 117(38): 23932-23941, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900951

RESUMO

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.


Assuntos
Tecido Adiposo/metabolismo , RNA Helicases DEAD-box/metabolismo , Exercício Físico/fisiologia , Ribonuclease III/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica/fisiologia , Adipócitos/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Feminino , Glicólise , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Condicionamento Físico Animal , Ribonuclease III/deficiência , Ribonuclease III/genética
8.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422878

RESUMO

Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.

9.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204421

RESUMO

Recent discoveries on the neurobiology of the immunocompetent cells of the central nervous system (CNS), microglia, have been recognized as a growing field of investigation on the interactions between the brain and the immune system. Several environmental contexts such as stress, lesions, infectious diseases, and nutritional and hormonal disorders can interfere with CNS homeostasis, directly impacting microglial physiology. Despite many encouraging discoveries in this field, there are still some controversies that raise issues to be discussed, especially regarding the relationship between the microglial phenotype assumed in distinct contexts and respective consequences in different neurobiological processes, such as disorders of brain development and neuroplasticity. Also, there is an increasing interest in discussing microglial-immune system cross-talk in health and in pathological conditions. In this review, we discuss recent literature concerning microglial function during development and homeostasis. In addition, we explore the contribution of microglia to synaptic disorders mediated by different neuroinflammatory outcomes during pre- and postnatal development, with long-term consequences impacting on the risk and vulnerability to the emergence of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.


Assuntos
Encéfalo/fisiologia , Microglia/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Plasticidade Neuronal/fisiologia , Estresse Fisiológico/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Homeostase/imunologia , Homeostase/fisiologia , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/fisiologia , Inflamação/fisiopatologia
10.
Curr Pharm Des ; 25(45): 4755-4762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840603

RESUMO

Myelin is a specialized membrane allowing for saltatory conduction of action potentials in neurons, an essential process to achieve the normal communication across the nervous system. Accordingly, in diseases characterized by the loss of myelin and myelin forming cells -oligodendrocytes in the CNS-, patients show severe neurological disabilities. After a demyelinated insult, microglia, astrocytes and oligodendrocyte precursor cells invade the lesioned area initiating a spontaneous process of myelin repair (i.e. remyelination). A preserved hallmark of this neuroinflammatory scenario is a local increase of oxidative stress, where several cytokines and chemokines are released by glial and other cells. This generates an environment that determines cell interaction resulting in oligodendrocyte maturity and the ability to synthesize new myelin. Herein we review the main features of the regulatory aspect of these molecules based on recent findings and propose new putative signal molecules involved in the remyelination process, focused in the etiology of Multiple Sclerosis, one of the main demyelinating diseases causing disabilities in the population.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Neuroglia/citologia , Estresse Oxidativo , Comunicação Celular , Humanos , Inflamação/patologia , Esclerose Múltipla , Bainha de Mielina , Oligodendroglia/citologia
11.
Cell Commun Signal ; 17(1): 27, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894182

RESUMO

BACKGROUND: Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvß3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvß3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvß3/VEGFR2 cross-talk and its downstream pathways. METHODS: Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvß3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. RESULTS: DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvß3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and ß3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvß3 integrin and VEGFR2 in treated cells. CONCLUSIONS: Disintegrin inhibition of αvß3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis.


Assuntos
Movimento Celular/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Desintegrinas/farmacologia , Células Endoteliais da Veia Umbilical Humana , Integrina alfaVbeta3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adesão Celular , Células Cultivadas , Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Paxilina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Quinases da Família src/metabolismo
12.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650539

RESUMO

Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs' discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.


Assuntos
Adaptação Fisiológica , Brassinosteroides/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Brassinosteroides/química , Reguladores de Crescimento de Plantas/química , Transdução de Sinais
13.
J Nutr Biochem ; 61: 173-182, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30245336

RESUMO

Fructose-rich diet (FRD) has been associated with obesity development, which is characterized by adipocytes hypertrophy and chronic low-grade inflammation. Interaction of adipocytes and immune cells plays a key role in adipose tissue (AT) alterations in obesity. We assessed the metabolic and immune impairments in AT in a murine obesity model induced by FRD at different periods. Adult Swiss mice were divided into groups of 6 and 10 weeks of fructose (FRD 6wk, FRD 10wk) or water intake (CTR 6wk, CTR 10wk). FRD induced increased in body weight, epidydimal AT mass, and plasmatic and liver Tg, and impaired insulin sensitivity. Also, hypertrophic adipocytes from FRD 6wk-10wk mice showed higher IL-6 when stimulated with LPS and leptin secretion. Several of these alterations worsened in FRD 10wk. Regarding AT inflammation, FRD mice have increased TNFα, IL-6 and IL1ß, and decrease in IL-10 and CD206 mRNA levels. Using CD11b, LY6C, CD11c and CD206 as macrophages markers, we identified for first time in AT M1 (M1a: Ly6C+/-CD11c+CD206- and M1b: Ly6C+/-CD11c+CD206+) and M2 subtypes (Ly6C+/-CD11c-CD206+). M1a phenotype increased from 6 weeks onward, while Ly6C+/- M1b phenotype increased only after 10 weeks. Finally, co-culture of RAW264.7 (monocytes cell line) and CTR or FRD adipocytes showed that FRD 10wk adipocytes increased IL-6 expression in non- or LPS-stimulated monocytes. Our results showed that AT dysfunction got worse as the period of fructose consumption was longer. Inflammatory macrophage subtypes increased depending on the period of FRD intake, and hypertrophic adipocytes were able to create an environment that favored M1 phenotype in vitro.


Assuntos
Adipócitos/efeitos dos fármacos , Frutose/efeitos adversos , Macrófagos/fisiologia , Adipócitos/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Animais , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Antígenos CD11/metabolismo , Antígeno CD11b/metabolismo , Interleucina-6/metabolismo , Lectinas Tipo C/metabolismo , Fígado/efeitos dos fármacos , Fígado/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Receptores de Superfície Celular/metabolismo
14.
Front Plant Sci ; 9: 1147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158942

RESUMO

False-spider mites of the genus Brevipalpus are highly polyphagous pests that attack hundreds of plant species of distinct families worldwide. Besides causing direct damage, these mites may also act as vectors of many plant viruses that threaten high-value ornamental plants like orchids and economically important crops such as citrus and coffee. To better understand the molecular mechanisms behind plant-mite interaction we used an RNA-Seq approach to assess the global response of Arabidopsis thaliana (Arabidopsis) plants along the course of the infestation with Brevipalpus yothersi, the main vector species within the genus. Mite infestation triggered a drastic transcriptome reprogramming soon at the beginning of the interaction and throughout the time course, deregulating 1755, 3069 and 2680 genes at 6 hours after infestation (hai), 2 days after infestation (dai), and 6 dai, respectively. Gene set enrichment analysis revealed a clear modulation of processes related to the plant immune system. Co-expressed genes correlated with specific classes of transcription factors regulating defense pathways and developmental processes. Up-regulation of defensive responses correlated with the down-regulation of growth-related processes, suggesting the triggering of the growth-defense crosstalk to optimize plant fitness. Biological processes (BPs) enriched at all time points were markedly related to defense against herbivores and other biotic stresses involving the defense hormones salicylic acid (SA) and jasmonic acid (JA). Levels of both hormones were higher in plants challenged with mites than in the non-infested ones, supporting the simultaneous induction of genes from both pathways. To further clarify the functional relevance of the plant hormonal pathways on the interaction, we evaluated the mite performance on Arabidopsis mutants impaired in SA- or JA-mediated response. Mite oviposition was lower on mutants defective in SA biosynthesis (sid2) and signaling (npr1), showing a function for SA pathway in improving the mite reproduction, an unusual mechanism compared to closely-related spider mites. Here we provide the first report on the global and dynamic plant transcriptome triggered by Brevipalpus feeding, extending our knowledge on plant-mite interaction. Furthermore, our results suggest that Brevipalpus mites manipulate the plant defensive response to render the plant more susceptible to their colonization by inducing the SA-mediated pathway.

15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(1): e6698, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889006

RESUMO

Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.


Assuntos
Humanos , Espondilite Anquilosante/genética , Transdução de Sinais/genética , Expressão Gênica , Receptor Cross-Talk/fisiologia , Perfilação da Expressão Gênica/métodos , Valores de Referência , Método de Monte Carlo , Área Sob a Curva , Bases de Dados Genéticas , Análise em Microsséries/métodos , Estudos de Associação Genética
16.
Braz. arch. biol. technol ; Braz. arch. biol. technol;58(6): 854-863, Nov.-Dec. 2015. graf
Artigo em Inglês | LILACS | ID: lil-766968

RESUMO

ABSTRACT Early embryonic mortality is one of the main sources of reproductive wastages and major constraints for full exploitation of the production potential of livestock. The survivality of embryo during early embryonic life is mostly dependent on the efficiency with which the maternal recognition of pregnancy (MRP) is established. Maternal recognition of pregnancy involves molecular dialogue between the trophoblast of conceptus and uterine endometrium. Embryonic development to the blastocyst stage and uterine differentiation to the receptive environment are crucial for successful establishment of the embryo-uterine cross-talk that leads to the initiation and progression of successful implantation. Unravelling the complex intricate molecular and cellular dialogues between the conceptus and uterine environment will facilitate development of strategies to augment early embryo survivality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA