Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Monit Assess ; 196(8): 686, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958830

RESUMO

Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.


Assuntos
Cromo , Salinidade , Poluentes Químicos da Água , Cromo/análise , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Cianobactérias , Diatomáceas , Biodegradação Ambiental
2.
Gels ; 9(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975646

RESUMO

In this paper, a model for Cr (VI) removal and optimization was made using a novel aerogel material, chitosan-resole CS/R aerogel, where a freeze-drying and final thermal treatment was employed to fabricate the aerogel. This processing ensures a network structure and stability for the CS, despite the non-uniform ice growth promoted by this process. Morphological analysis indicated a successful aerogel elaboration process., FTIR spectroscopy corroborated the aerogel precursor's identity and ascertained chemical bonding after adsorption. Owing to the variability of formulations, the adsorption capacity was modeled and optimized using computational techniques. The response surface methodology (RSM), based on the Box-Behnken design using three levels, was used to calculate the best control parameters for the CS/R aerogel: the concentration at %vol (50-90%), the initial concentration of Cr (VI) (25-100 mg/L), and adsorption time (0.3-4 h). Analysis of variance (ANOVA) and 3D graphs reveal that the CS/R aerogel concentration and adsorption time are the main parameters that influence the initial concentration of CS/R aerogel metal-ion uptake. The developed model successfully describes the process with a correlation coefficient of R2 = 0.96 for the RSM. The model obtained was optimized to find the best material design proposal for Cr (VI) removal. Numerical optimization was used and showed superior Cr (VI) removal (94.4%) under conditions of a CS/R aerogel concentration of 87/13 %vol, with an initial concentration of Cr (VI) of 31 mg/L, and an adsorption time of 3.02 h. These results suggest that the proposed computational model can obtain an effective and viable model for CS material processing and for optimization of the uptake of this metal.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36981823

RESUMO

The first element legislated adopting chemical speciation was chromium (Cr) for differentiation between the highly toxic Cr(VI) from the micronutrient Cr(III). Therefore, this work aimed to develop a new analytical method through the coupling of High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) with inductively coupled plasma mass spectrometry (ICP-MS) to obtain molecular and elemental information simultaneously from a single sample injection. In the first step, a low-cost flow split made of acrylic was developed aiming at optimally directing the sample to the detectors, enabling the HPLC-DAD/ICP-MS coupling. After the extraction of Certified Reference Materials (CRM of natural water NIST1640a and sugar cane leaf agro FC_012017), the recoveries determined by ICP-MS were 99.7% and 85.4%, respectively. Then, the method of HPLC-DAD/ICP-MS was applied for real samples of the CRMs. The presence of possible biomolecules associated with Cr(III) and Cr(VI) species was evaluated, with the simultaneous response detection of molecular (DAD) and elementary (ICP-MS) detectors. Potential biomolecules were observed during the monitoring of Cr(VI) and Cr(III) in sugar cane leaves, water samples and a supplement of Cr picolinate. Finally, the article also discusses the potential of the technique applied to biomolecules containing other associated elements and the need of more bioanalytical methods to understand the presence of trace elements in biomolecules.


Assuntos
Cromo , Oligoelementos , Cromatografia Líquida de Alta Pressão/métodos , Cromo/análise , Espectrometria de Massas/métodos , Oligoelementos/análise , Água
4.
Environ Res ; 216(Pt 1): 114431, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167113

RESUMO

Cr(VI) is a toxic, teratogenic, and carcinogenic heavy metal element in soil that poses major ecological and human health risks. In this study, microcosm tests combined with X-ray absorption near-edge spectra (XANES) and 16Sr DNA amplification techniques were used to explore the effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Ginkgo biloba leaves had a favorable remediation effect on soil varying in Cr(VI) contamination levels, and the optimal effect was observed when 5% Ginkgo biloba leaves were added. The occurrence state of Cr(VI) in soil before and after the addition of Ginkgo biloba leaves was analyzed by XANES, which revealed that Cr(VI) was fully converted to the more biologically innocuous Cr(III), and the hydroxyl-containing quercetin in Ginkgo biloba leaves was one of the primary components mediating this reduction reaction. The Cr(VI) content was significantly lower in non-sterilized soil than in sterilized soil, suggesting that soil microorganisms play a key role in the remediation process. The addition of Ginkgo biloba leaves decreased the α-diversity and altered the ß-diversity of the soil bacterial community. Actinobacteria was the dominant phylum in the soil remediated by Ginkgo biloba leaves; four genera of Cr(VI)-reducing bacteria were also enriched, including Agrococcus, Klebsiella, Streptomyces, and Microbacterium. Functional gene abundances predicted by PICRUST indicated that the expression of glutathione synthesis genes was substantially up-regulated, which might be the main metabolic pathway underlying the mitigation of Cr(VI) toxicity in soil by Cr(VI)-reducing bacteria. In sum, Ginkgo biloba leaves can effectively remove soil Cr(VI) and reduce Cr(VI) to Cr(III) via quercetin in soil, which also functions as a carbon source to drive the production of glutathione via Cr(VI)-reducing bacteria and mitigate Cr(VI) toxicity. The findings of this study elucidate the chemical and microbial mechanisms of Cr(VI) removal in soil by Ginkgo biloba leaves and provide insights that could be used to enhance the remediation of Cr(VI)-contaminated soil.


Assuntos
Ginkgo biloba , Poluentes do Solo , Humanos , Ginkgo biloba/química , Solo/química , Quercetina , Cromo/análise , Glutationa , Poluentes do Solo/análise
5.
Environ Sci Pollut Res Int ; 29(3): 3958-3966, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613547

RESUMO

Hexavalent chromium [Cr(VI)] is extremely toxic to plant cells and has been recognized to possess a high redox potential. Tolerant plant species have shown the ability to reduce Cr(VI), but the operating mechanism involved in this process is not elucidated. Thus, the aim of this study was to investigate the possible involvement of thiolic and phenolic compounds and thioredoxin expression during Cr(VI) reduction in S. minima. In addition, a probable enzymatic reduction of Cr(VI) was investigated. Plants were exposed to 20 mg L-1 Cr(VI) concentration during 7 days under controlled conditions. The amount of metal accumulated in lacinias (root-like submerged leaves) and fronds (floating leaves) indicated that a low percentage of absorbed Cr(VI) was mobilized from lacinias to fronds. X-ray absorption near-edge structure (XANES) analysis revealed that Cr(III) was the only chromium species occurring in S. minima plants. Thiols and phenolics of lacinias and fronds were increased significantly by Cr(VI) treatment, but accumulation patterns were different. The expression of an h-type thioredoxin (Trx h) was demonstrated for the first time in Cr-exposed lacinias. Enzymatic reduction showed a low contribution to the Cr(VI) reduction. Data of this study provide evidences on the involvement of thiols, thioredoxin, and phenolics in the reduction of Cr(VI) to Cr(III) in S. minima tissues.


Assuntos
Cromo , Traqueófitas , Oxirredução , Fenóis , Tiorredoxinas
6.
J Fungi (Basel) ; 7(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34947004

RESUMO

Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, Purpureocillium lilacinum, from contaminated soil, which could reduce chromium. We also characterized a reductant activity of dichromate found in the cellular fraction of the fungus: optimal pH and temperature, effect of enzymatic inhibitors and enhancers, metal ions, use of electron donors, and initial Cr (VI) and protein concentration. This study also shows possible mechanisms that could be involved in the elimination of this metal. We observed an increase in the reduction of Cr (VI) activity in the presence of NADH followed by that of formate and acetate, as electron donor. This reduction was highly inhibited by EDTA followed by NaN3 and KCN, and this activity showed the highest activity at an optimal pH of 7.0 at 37 °C with a protein concentration of 3.62 µg/mL.

7.
Chemosphere ; 282: 131135, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470171

RESUMO

Hexavalent chromium is a highly toxic element generated due to indiscriminate chromite mining in Sukinda, Odisha. In the present research investigation a relatively higher Cr(VI) resistant (900 mg L-1) bacterium CWB-54 was isolated from the chromite mine water. Based on the biochemical and molecular analysis the strain (CWB-54) was identified as Exiguobacterium mexicanum. When this bacterium was grown at 35 °C, 100 rpm, pH~8.0, and fructose as an electron donor, it could reduce the total hexavalent chromium (100 mg L-1) supplemented in the medium within 33 h of incubation period. Though experiment was carried out to study the effect of Mn, Ni, Cd, Hg and Zn on Cr(VI) reduction by the strain E. mexicanum it has been observed that in the presence of Cd and Hg, Cr(VI) reduction drastically decreased. Characterization of Cr(VI) reduced product by SEM-EDX and TEM analysis revealed intracellular and extracellular Cr(III) deposition in the bacterium, which is assumed to be Cr(OH)3 precipitate in nanometric size. But the extracellular chromate reductase enzyme production is found to be negligible as compared to the intracellular enzyme production. The increased concentration of Cr(VI) above (1000 mg L-1) also showed the genotoxic effect on the DNA. Several reports have been published on Exiguobacterium sp. on different scientific aspect but the current report on the reduction of toxic Cr(VI) by a new species E. mexicanum is a novel one which established the potentiality of this microorganism for a broad area of application.


Assuntos
Exiguobacterium , Solo , Biodegradação Ambiental , Cromo , Oxirredução
8.
World J Microbiol Biotechnol ; 37(1): 9, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33392828

RESUMO

Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQCell) on solid supports, implemented in the RDIDCell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQCell parameter by electrostatic immobilization of ten microbial strains on AMBERJET® 4200 Cl- porous solid support. All predicted tMQCell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDIDCell software are more accurate than the values predicted by the RDID1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 µg IAA-like indoles/108 cells) than that of the cell suspension (1.5 µg IAA-like indoles/108 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 µg Cr(III)/108 cells) than the resuspended cells (14.5 µg Cr(III)/108 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Biologia Computacional/métodos , Algoritmos , Bactérias/metabolismo , Biomassa , Poluentes Ambientais , Metais Pesados/metabolismo , Software , Eletricidade Estática
9.
Environ Technol ; 42(6): 952-963, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31378161

RESUMO

Hexavalent chromium becomes in one of the tops internationally concern environmental issues due to its wide usage in several industrial activities. There are two stable oxidation states of chromium in the environment which differ significantly on its toxicity; Cr(III) has lower solubility, mobility and lesser biological toxicity in comparison with Cr(VI). While Cr(VI) is a well-known carcinogen, Cr(III) is an essential dietary element. For this reason, most technologies focus attention on the reduction of Cr(VI) to Cr(III). On this context, the ability of microorganisms to reduce Cr(VI) to Cr(III) has gained attention. The objectives of the present work were to analyze the effect of Cr(VI) on the activated sludge community in a continuous reactor, and to evaluate the differences on the metabolic activity of native (NAS) and Cr(VI)-acclimated activated sludge (CrAAS) using a respirometric method. Results showed that the activated sludge community had the capability to acclimate to the presence of Cr(VI). On the other hand, the increase of the initial Cr(VI) concentration from 0 to 100 mgCr/L leads to a decrease in the specific exogenous respiration rate (qEx ) values, but this reduction was more noticeably in the case of NAS in comparison with CrAAS. The respirometric curves were well described by the proposed mathematical model. It was concluded that the CrAAS tolerated a Cr(VI) concentration about one order of magnitude higher than NAS, which was positively reflected in the respiration rate first-order decay constant (kd ), the specific maximum exogenous respiration rate (qExm ), and the observed oxidation coefficient (YO/S ) values.


Assuntos
Cromo , Esgotos , Oxirredução
10.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64(spe): e21200455, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1278455

RESUMO

Abstract Six sample preparation procedures were evaluated for selective extraction of Cr(VI) from commercial samples of chromium oxide green (Cr2O3) pigments prior to formation of its diphenylcarbazone complex [CrDPCO]- for determination by visible spectrophotometry: (I) water-soluble chromium; (II) EPA method 3060A without Mg2+; (III) EPA method 3060A with Mg2+; (IV) Na3PO4 based extraction; (V) method IRSA16 based on acidic extraction and; (VI) Na2CO3 based extraction. Evaluation of the influence of concomitant Cr(III) ions, time and stability of the [CrDPCO]- complex was investigated. Recoveries of soluble and insoluble Cr(VI) species were 86% and 80%, respectively, using procedure (VI). Direct calibration against aqueous standards prepared in the extraction medium was successful for Cr(VI) in the concentration range 0.05-1.50 μg L-1. Limits of detection and quantitation were 0.3 µg g-1 and 1.0 µg g-1, respectively, for 250 mg subsamples/25 mL. Procedure (VI) was applied to the analysis of four commercial samples of Cr2O3 pigments, three determined to have Cr(VI) within compliance limits below 1.0 µg g-1, but one at 16.6 ± 0.6 µg g-1, prohibiting use of this pigment in cosmetic formulations. This sample was conveniently employed to evaluate the accuracy of the method. The recommended procedure is simple and accurate and has been adopted by Tecpar's laboratory of Parana Institute of Technology (Curitiba, Brazil).


Assuntos
Humanos , Pigmentos Biológicos , Espectrofotometria/instrumentação , Cromo/análise , Brasil
11.
Chemosphere ; 260: 127211, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682127

RESUMO

The sonochemical (850 kHz) Cr(VI) reduction (0.30 mM, pH 2) in the presence of citric acid (Cit, 2 mM) was analyzed under different working atmospheres: reactor open to air without sparging (ROAWS), and Ar, O2, air and N2 sparging. Hydrogen peroxide formation in pure water at pH 2 and KI dosimetry were also measured. Zero-order kinetics was observed in all cases. A complete Cr(VI) reduction after 180 min insonation was obtained with the ROAWS and under Ar, while a lower Cr(VI) reduction efficiency was achieved under the other conditions. The Cr(VI) reduction and H2O2 formation rates followed the order ROAWS â‰… Ar > air â‰… O2 ≫ N2, while for KI dosimetry the order was ROAWS â‰« O2 â‰… air > Ar â‰« N2. This indicates that H2O2 formation rate is a better measure of the system reactivity for Cr(VI) reduction. For air, O2 and N2, once the sparging was stopped, Cr(VI) reduction rate increased up to approximately the same value obtained for the ROAWS, suggesting that the sparging decreased the generation of reactive species and, thus, the Cr(VI) reduction rate. Nitrate production was measured at low concentrations (micromolar range) in the ROAWS, air and N2 systems. Formic and acetic acids were detected as Cit degradation products. Reaction mechanisms were proposed. It can be concluded that the best condition for Cr(VI) removal is with the ROAWS because of a higher Cr(VI) reduction rate, no atmosphere control is required, and it is a less expensive system.


Assuntos
Cromo/química , Ácido Cítrico/química , Gases , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxirredução
12.
Artigo em Inglês | MEDLINE | ID: mdl-32033384

RESUMO

This study investigated the reduction of hexavalent chromium (Cr(VI)) in a clayey residual soil using nanoscale zero-valent iron (nZVI). Five different ratios between nZVI and Cr(VI) were tested in batch tests (1000/11; 1000/23; 1000/35; 1000/70, and 1000/140 mg/mg) with the soil. With the selected proportion resulting best efficiency, the column tests were conducted, with molded specimens of 5 cm in diameter and 5 cm in height, with different nZVI injection pressures (10, 30, and 100 kPa). The soil was contaminated with 800 mg/kg of Cr(VI). The Cr(VI) and Cr(III) analyses were performed following the USEPA 3060A and USEPA 7196A standards. The results show that the reduction of Cr(VI) is dependent on the ratio between nZVI and Cr(VI), reaching 98% of efficiency. In column tests, the pressure of 30 kPa was the most efficient. As pressure increased, contaminant leaching increased. The permeability decreased over time due to the gradual increase in filtration and formation of oxyhydroxides, limiting nZVI mobility. Overall, nZVI is efficient for soil remediation with Cr(VI), but the injection process can spread the contaminated if not properly controlled during in situ application.


Assuntos
Cromo/química , Cromo/toxicidade , Argila/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanotecnologia/métodos , Poluentes do Solo/toxicidade
13.
Sci Total Environ ; 699: 134331, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31670212

RESUMO

The groundwater contamination by hexavalent chromium (Cr(VI)) in a site of the Matanza-Riachuelo River basin (MRB), Argentina, has been evaluated by determining the processes that control the natural mobility and attenuation of Cr(VI) in the presence of high nitrate (NO3-) contents. The groundwater Cr(VI) concentrations ranged between 1.9E-5 mM and 0.04 mM, while the NO3- concentrations ranged between 0.5 mM and 3.9 mM. In order to evaluate the natural attenuation of Cr(VI) and NO3- in the MRB groundwater, Cr and N isotopes were measured in these contaminants. In addition, laboratory batch experiments were performed to determine the isotope fractionation (ε) during the reduction of Cr(VI) under denitrifying conditions. While the Cr(VI) reduction rate is not affected by the presence of NO3-, the NO3- attenuation is slower in the presence of Cr(VI). Nevertheless, no significant differences on ε values were observed when testing the absence or presence of each contaminant. The ε53Cr determined in the batch experiments describe a two- stage trend, in which Stage I is characterized by ε53Cr ~-1.8‰ and Stage II by ε53Cr ~-0.9‰. The respective ε15NNO3 obtained is -23.9‰ whereas ε18ONO3 amount to -25.7‰. Using these ε values and a Rayleigh fractionation model we estimate that an average of 60% of the original Cr(VI) is removed from the groundwater of the contaminated site. Moreover, the average degree of NO3- attenuation by denitrification is found to be about 20%. This study provides valuable information about the dynamics of a complex system that can serve as a basis for efficient management of contaminated groundwater in the most populated and industrialized basin of Argentina.

14.
Lipids ; 54(9): 557-570, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31475368

RESUMO

The remodeling of membrane lipids is a mechanism that allows microorganisms to survive in unfavorable environments such as industrial effluents, which often contain inorganic and organic pollutants, like chromium and phenol. In the present work, we evaluated the effect of Cr(VI) and phenol on the membrane of Acinetobacter guillouiae SFC 500-1A, a bacterial strain isolated from tannery sediments where such pollutants can be found. The presence of lipid kinases and phospholipases and the changes in their activities under exposure to these pollutants were determined. Cr(VI) and Cr(VI) + phenol caused the membrane to become more rigid for up to 16 h after exposure. This could be due to an increase in cardiolipin (Ptd2 Gro) and a decrease in phosphatidylethanolamine (PtdEtn), which are indicative of more order and rigidity in the membrane. Increased phospholipase A activity (PLA, EC 3.1.1.4) could be responsible for the decrease in PtdEtn levels. Moreover, our results indicate that Cr(VI) and Cr(VI) + phenol trigger the phosphatidic acid (PtdOH) signal. The finding of significantly increased phosphatidylinositol-4-phosphate (PtdIns-4-P) levels means this is likely achieved via PtdIns-PLC/DGK. This report provides the first evidence that A. guillouiae SFC 500-1A is able to sense Cr(VI) and phenol, transduce this signal through changes in the physical state of the membrane, and trigger lipid-signaling events.


Assuntos
Acinetobacter/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cromo/farmacologia , Fenóis/farmacologia , Ácidos Fosfatídicos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/metabolismo , Polarização de Fluorescência , Ácidos Fosfatídicos/metabolismo
15.
Environ Sci Pollut Res Int ; 26(27): 28162-28172, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31363969

RESUMO

Pollution caused by heavy metals is a prime concern due to its impact on human health, animals, and ecosystems. Cr(VI), generated in a range of different industries as a liquid effluent, is one of the most frequent contaminants. In the work presented herein, the adsorption efficiency of three species of native yeasts from Ecuador (Kazachstania yasuniensis, Kodamaea transpacifica, and Saturnispora quitensis) for Cr(VI) removal from simulated wastewater was assessed, taking Saccharomyces cerevisiae as a reference. After disruption of the flocs of yeast with a cationic surfactant, adsorption capacity, kinetics, and biosorption isotherms were studied. K. transpacifica isolate was found to feature the highest efficiency among the four yeasts tested, as a result of its advantageous combination of surface charge, individual cell size (4.04 µm), and surface area (1588.27 m2/L). The performance of S. quitensis was only slightly lower. The remarkable biosorption capacities of these two isolates (476.19 and 416.67 mg of Cr(VI)/g of yeast, respectively) evidence the potential of non-conventional yeast species as sorption microbial particles for polluted water remediation.


Assuntos
Cromo/química , Metais Pesados/análise , Saccharomyces cerevisiae/metabolismo , Tensoativos/química , Adsorção , Ecossistema , Equador , Cinética , Metais Pesados/química , Saccharomyces cerevisiae/química , Águas Residuárias , Poluição da Água
16.
Rev. argent. microbiol ; Rev. argent. microbiol;51(2): 110-118, jun. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1013359

RESUMO

Although Cr(VI)-reducing and/or tolerant microorganisms have been investigated, there is no detailed information on the composition of the microbial community of the biocathode microbial fuel cell for Cr(VI) reduction. In this investigation, the bacterial diversity of a biocathode was analyzed using 454 pyrosequencing of the 16S rRNA gene. It was found that most bacteria belonged to phylum Proteobacteria (78.8%), Firmicutes (7.9%), Actinobacteria (6.6%) and Bacteroidetes (5.5%), commonly present in environments contaminated with Cr(VI). The dominance of the genus Pseudomonas (34.87%), followed by the genera Stenotrophomonas (5.8%), Shinella (4%), Papillibacter (3.96%), Brevundimonas (3.91%), Pseu-dochrobactrum (3.54%), Ochrobactrum (3.49%), Hydrogenophaga (2.88%), Rhodococcus (2.88%), Fluviicola (2.35%), and Alcaligenes (2.3%), was found. It is emphasized that some genera have not previously been associated with Cr(VI) reduction. This biocathode from waters contaminated with tannery effluents was able to remove Cr(VI) (97.83%) in the cathodic chamber. Additionally, through use of anaerobic sludge in the anodic chamber, the removal of 76.6% of organic matter (glucose) from synthetic waste water was achieved. In this study, an efficient biocathode for the reduction of Cr(VI) with future use in bioremediation, was characterized.


Aunque se ha investigado sobre los microorganismos reductores y/o tolerantes de Cr(VI), no hay información detallada sobre la composición de la comunidad microbiana del cátodo de una Celda de Combustible Microbiana para la reducción de Cr(VI). En esta investigación se analizó la diversidad bacteriana de un biocátodo usando pirosecuenciación 454 del gen 16S rRNA. Se encontró que la mayoría de las bacterias pertenecieron a los filos Proteobac-teria (78,8%), Firmicutes (7,9%), Actinobacteria (6,6%) y Bacteroidetes (5,5%), comúnmente presentes en ambientes contaminados con Cr(VI). Se encontró como género dominante a Pseudomonas (34,87%), seguido por los géneros Stenotrophomonas (5,8%), Shinella (4%), Papil-libacter (3,96%), Brevundimonas (3,91%), Pseudochrobactrum (3,54%), Ochrobactrum (3,49%), Hydrogenophaga (2,88%), Rhodococcus (2,88%), Fluviicola (2,35%) y Alcaligenes (2,3%). Se destaca que algunos géneros no han sido previamente asociados con la reducción de Cr(VI). Este biocátodo procedente de aguas contaminadas con efluentes de curtiembres fue capaz de remover Cr(VI) (97,83%) en la cámara catódica. Adicionalmente, a través del uso de lodo anaeróbico en la cámara anódica, se logró la remoción del 76,6% de materia orgánica (glucosa) a partir de agua residual sintética. En este estudio se caracterizó un eficiente biocátodo para la reducción de Cr(VI) con futuro uso en biorremediación.


Assuntos
RNA Ribossômico 16S/análise , Actinobacteria/isolamento & purificação , Águas Residuárias/microbiologia , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Monitoramento Ambiental , Substâncias Redutoras/análise
17.
Environ Sci Pollut Res Int ; 26(16): 15973-15988, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963426

RESUMO

In this study, the synthesis of iron oxide stabilized by chitosan was carried out for the application and optimization in the removal process of aqueous Cr(VI) by central composite design (CCD). The calculation of these effects allowed to know, quantitatively, the variables and the interaction between them that could affect the Cr(VI) removal process. It was also verified that the most favorable conditions for chromium removal were the following: pH 5.0, Cr(VI) concentration of 130 mg L-1, adsorbent mass of 5 mg, and Fe(II) content of 45% (w/w) in the CT-Fe beads. The adsorption kinetics performed under these conditions showed that the chitosan/iron hybrid composite is an adsorbent material with high chromium removal capacity (46.12 mg g-1). It was found that all variables were statistically significant. However, it was observed that the variable that most affected Cr(VI) removal was the pH of the solution, followed by the concentration of chromium ions in solution and the interaction between them. Therefore, the studied experimental conditions are efficient in chromium adsorption, besides the operational simplicity coming from statistical design. Theoretical calculations showed that the most stable chitosan was that with Fe(II) in the structure, that is, in the reaction mechanism, there is no competition of Fe(II) with Cr(III, VI) in the available sites of chitosan. Thus, the theoretical calculations show that the proposed Cr(VI) removal is effective.


Assuntos
Quitosana/química , Cromo/isolamento & purificação , Compostos Férricos/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cromo/análise , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
J Sci Food Agric ; 99(1): 183-190, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29851070

RESUMO

BACKGROUND: The present study aimed to evaluate the nutritional, physiological and biochemical effects of dietary supplementation of an association of probiotic bacteria in rats intoxicated with chromium (VI). Ninety-six male rats, recently weaned, were randomly divided into eight groups (n = 12): Control, DK12, DK24 and DK36 (0, 0.12, 0.24 and 0.36 g kg-1 of K2 Cr2 O7 incorporated in the basal feed, respectively) and groups Prob, DK12 + Prob, DK24 + Prob and DK36 + Prob received a progressive dose of 0, 0.12, 0.24 and 0.36 g kg-1 of K2 Cr2 O7 incorporated in the basal feed and supplemented with 0.02 g kg-1 of an association of probiotic bacteria (Lactobacillus acidophilus, Enterococcus faecium, Bifidobacterium thermophilum and Bifidobacterium longum). RESULTS: After 90 days, we observed significant (P < 0.05) and dose-dependent alterations from incorporation of increasing doses of chromium (VI) related to nutritional, physiological and biochemical parameters. These changes were attenuated (P < 0.05) with probiotic supplementation. CONCLUSION: Supplementation with probiotics in the diet beneficially modified the nutritional and physiological parameters, as well as hepatic, renal, glycemic and lipid profiles, of animals intoxicated with increasing doses of K2 Cr2 O7 . © 2018 Society of Chemical Industry.


Assuntos
Intoxicação por Metais Pesados/tratamento farmacológico , Lactobacillaceae/fisiologia , Dicromato de Potássio/toxicidade , Probióticos/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Intoxicação por Metais Pesados/etiologia , Intoxicação por Metais Pesados/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Probióticos/análise , Distribuição Aleatória , Ratos , Ratos Wistar
19.
J Environ Manage ; 232: 305-309, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496959

RESUMO

In this work, we demonstrate for the first time that Thermal Lens Microscopy technique (TLM) can be applied to monitor the dynamics of a photocatalytic process in-situ. The photocatalytic reduction of hexavalent chromium -Cr(VI)- in aqueous solution using CdS and irradiated with visible light is monitored by TLM. Since the values of Cr(VI) concentration obtained after the photocatalytic process were close to those imposed by the international regulations for drinking water, the use of TLM allowed its measurement with a better reliability than with UV spectroscopy, usually used in this kind of analysis.


Assuntos
Microscopia , Águas Residuárias , Catálise , Cromo , Reprodutibilidade dos Testes
20.
Rev Argent Microbiol ; 51(2): 110-118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30144991

RESUMO

Although Cr(VI)-reducing and/or tolerant microorganisms have been investigated, there is no detailed information on the composition of the microbial community of the biocathode microbial fuel cell for Cr(VI) reduction. In this investigation, the bacterial diversity of a biocathode was analyzed using 454 pyrosequencing of the 16S rRNA gene. It was found that most bacteria belonged to phylum Proteobacteria (78.8%), Firmicutes (7.9%), Actinobacteria (6.6%) and Bacteroidetes (5.5%), commonly present in environments contaminated with Cr(VI). The dominance of the genus Pseudomonas (34.87%), followed by the genera Stenotrophomonas (5.8%), Shinella (4%), Papillibacter (3.96%), Brevundimonas (3.91%), Pseudochrobactrum (3.54%), Ochrobactrum (3.49%), Hydrogenophaga (2.88%), Rhodococcus (2.88%), Fluviicola (2.35%), and Alcaligenes (2.3%), was found. It is emphasized that some genera have not previously been associated with Cr(VI) reduction. This biocathode from waters contaminated with tannery effluents was able to remove Cr(VI) (97.83%) in the cathodic chamber. Additionally, through use of anaerobic sludge in the anodic chamber, the removal of 76.6% of organic matter (glucose) from synthetic waste water was achieved. In this study, an efficient biocathode for the reduction of Cr(VI) with future use in bioremediation, was characterized.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Cromo/metabolismo , Bactérias/classificação , Oxirredução , Sais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA