Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein J ; 43(3): 559-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615284

RESUMO

In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, ß, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56-50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent ß-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of -26,642.69141/Normalized DOPE score of -1.84041. The DBL monomer was found to consist a ß-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 µg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.


Assuntos
Antibacterianos , Dioclea , Lectinas de Plantas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Camundongos , Animais , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Lectinas de Plantas/isolamento & purificação , Dioclea/química , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Ampicilina/farmacologia , Ampicilina/química
2.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577614

RESUMO

Lectins are a widely studied group of proteins capable of specific and reversible binding to carbohydrates. Undoubtedly, the best characterized are those extracted from plants of the Leguminosae family. Inside this group of proteins, those from the Diocleinae subtribe have attracted attention, in particular Concanavalin A (ConA), the best-studied lectin of the group. Diocleinae lectins, also called ConA-like lectins, present a high similarity of sequence and three-dimensional structure and are known to present inflammatory, vasoactive, antibiotic, immunomodulatory and antitumor activities, among others. This high similarity of lectins inside the ConA-like group makes it possible to use them to study structure/biological activity relationships by the variability of both carbohydrate specificity and biological activities results. It is in this context the following review aims to summarize the most recent data on the biochemical and structural properties, as well as biological activities, of ConA-like lectins and the use of these lectins as models to study structure/biological activity relationships.


Assuntos
Concanavalina A/química , Concanavalina A/farmacologia , Lectinas/química , Lectinas/farmacologia , Carboidratos/química , Fenômenos Químicos , Concanavalina A/genética , Concanavalina A/isolamento & purificação , Mediadores da Inflamação/química , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/farmacologia , Lectinas/genética , Lectinas/isolamento & purificação , Relação Estrutura-Atividade
3.
Arch Biochem Biophys ; 543: 31-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361256

RESUMO

Lectins are comprised of a large family of proteins capable of the specific and reversible recognition of carbohydrates. Legume lectins, the most studied plant lectins, show high structural similarity, but with modifications that imply a variation in the intensity of some biological activities. In this work, the primary and tertiary structures of Canavalia grandiflora (ConGF) were determined. ConGF, a lectin isolated from C. grandiflora seeds, is able to induce relaxant activity in rat aortic rings. The complete sequence of ConGF comprises 237 amino acids. This particular protein has primary sequence variations commonly found in lectins from Dioclea and Canavalia genera. The protein structure was solved at 2.3 Å resolution by X-ray crystallography. An X-Man molecule was modeled into the carbohydrate recognition domain. Still, ConGF (30 and 100 µg mL(-1)) elicited 25% of vasorelaxation (IC50=34.48 ± 5.07 µg mL(-1)) in endothelialized aortic rings. A nonselective inhibitor of nitric oxide blocked ConGF relaxant effect, showing mediation by nitric oxide. Key distances between ConGF carbohydrate recognition domain residues were determined in order to explain this effect, in turn revealing some structural aspects that could differentiate lectins from the Canavalia genera with respect to different efficacy in vasorelaxant effect.


Assuntos
Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Técnicas In Vitro , Masculino , Manose/química , Manose/metabolismo , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Lectinas de Plantas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Análise de Sequência , Relação Estrutura-Atividade , Vasodilatadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA