Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35856186

RESUMO

A bench-scale tubular photo-reactor was built to evaluate the solar-driven TiO2-based photocatalytic degradation of synthetic polluted water samples. The reactor was designed as a compound-parabolic-collector and operated in batch mode using TiO2 P25 immobilized on a bed of pumice. The immobilization of TiO2 on pumice was carried out using a facile dip impregnation method followed by heat treatment. The obtained material was characterized by SEM, EDS, XRD, and nitrogen adsorption. It was possible to impregnate up to 68.5 mg of TiO2 per gram of pumice stones of 8-14 mm. Conversions of up to 35-40 and 62-69%, after 4 h of treatment and UV doses of 20.8 ± 3.5 kJ L-1, were achieved when the catalyst was used immobilized on pumice stone and in the form of a suspension, respectively. The stability and reusability of the catalyst-coated support was tested through a series of consecutive photocatalytic experiments. After four consecutive runs, the immobilized catalyst showed a decrease in its photoactivity leading to removal levels of 23%.


Assuntos
Titânio , Poluentes Químicos da Água , Catálise , Silicatos , Água
2.
Data Brief ; 30: 105490, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346563

RESUMO

In this document, the photocatalytic activity of TiO2/Fe3O4, prepared by the mixing of the pure oxides, was studied. The photocatalytic degradation of aqueous Methylene Blue (MB) solutions (10 and 30 ppm) was performed, the TiO2/Fe3O4 catalysts in 80/20, 50/50 and 20/80 mass ratios were used during the test, artificial sunlight and natural solar radiation were tested at laboratory and pilot plant scale respectively. Besides, the kinetic reactions were evaluated according to the Langmuir-Hinshelwood model, the apparent velocity constants (kapp) were obtained for the TiO2/Fe3O4 catalysts. In the laboratory test, the TiO2/Fe3O4 catalyst (80/20) had a performance for 93.04% of discoloration, kapp = 0.0238 min-1, while for TiO2/Fe3O4 (50/50, 20/80) had an 83.46%, 65.00% for discoloration of MB and the kapp values were 0.0154 min-1 and 0.0098 min-1, respectively. In the solar test at pilot scale, the percentages of discoloration of 24.32%, and 57.78%, with kapp values of 0.00037 min-1, 0.00121 min-1 respectively were obtained for TiO2/Fe3O4 (80/20), a MB solution of 30 ppm, a load of 0.1 g/L and 0.3 g/L of the catalyst respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA