RESUMO
Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1 H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.
Assuntos
Ascomicetos/metabolismo , Combretum/metabolismo , Metabolômica , Trichoderma/metabolismo , Ascomicetos/química , Combretum/química , Espectroscopia de Prótons por Ressonância Magnética , Trichoderma/químicaRESUMO
Chemical investigation of the ethyl acetate extract from the endophytic fungus Diaporthe phaseolorum-92C (92C) isolated from the roots of Combretum lanceolatum led to the isolation of 18-des-hydroxy Cytochalasin H (compound 1). The trypanocidal and schistosomicidal activity and cytotoxicity of the extract from 92C were evaluated. The schistosomicidal, leishmanicidal, antimicrobial, and antioxidant actions, as well as the antitumor activity against the breast cancer cells MDA-MB-231 and MCF-7, and the cytotoxicity towards normal human lung fibroblasts GM07492A of compound 1 was tested. The extract from 92C (20 µg/mL) exerted potent trypanocidal activity, reducing 82% of the number of amastigotes and trypomastigotes of Trypanosoma cruzi. Compound 1 at 50 µg/mL killed 50% of Schistosoma mansoni adult worms. Compound 1 reduced the viability of Leishmania amazonenses promastigotes (IC50 = 9.2 µg/mL) and of the cancer cells MDA-MB-231 and MCF-7 (IC50 = 17.5 and 8.88 µg/mL, respectively), presented moderate antioxidant activity, and gave IC50 of 2049.7 ± 39.9 µg/mL for the cytotoxicity towards normal cells GM07492A. This knowledge is highly relevant to the search for new promising compounds for therapeutic purposes.
Assuntos
Antiparasitários/isolamento & purificação , Ascomicetos/química , Combretum/microbiologia , Citocalasinas/farmacologia , Esquistossomicidas/farmacologia , Tripanossomicidas/farmacologia , Animais , Antiparasitários/farmacologia , Citocalasinas/isolamento & purificação , Endófitos , Feminino , Humanos , Leishmania/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Trypanosoma cruzi/efeitos dos fármacosRESUMO
The present study evaluated the antidiabetic activity of the Combretum lanceolatum Pohl ex Eichler, Combretaceae, flowers extract (ClEtOH) in diabetic rats. Streptozotocin-diabetic rats were divided into four groups: diabetic control, diabetic treated with 500 mg/kg of metformin and diabetic treated with 250 or 500 mg/kg of ClEtOH for 21 days. The treatment of diabetic rats with 500 mg/kg of ClEtOH promoted an increase in the weight of liver, white adipose tissues and skeletal muscles, improving body weight gain. Diabetic rats treated with 500 mg/kg of ClEtOH also presented reduction in glycemia, glycosuria and urinary urea levels, and increase in liver glycogen content. HPLC chromatogram showed that quercetin is the major compound in the extract. The phosphorylation levels of adenosine monophosphate-activated protein kinase were increased in liver slices incubated in vitro with 50 µg/mL of ClEtOH, similarly to the incubation with metformin (50 µg/mL) or quercetin (10 µg/mL). The antihyperglycemic effect of ClEtOH was similar to that of metformin and appears to be through inhibition of gluconeogenesis, since urinary urea was reduced and skeletal muscle mass was increased. These data indicate that the antidiabetic activity of the Combretum lanceolatum extract could be mediated, at least in part, through activation of adenosine monophosphateactivated protein kinase by quercetin.