Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Animals (Basel) ; 12(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35158599

RESUMO

This study analyzes the evolution of the population structure and genetic diversity of Braford cattle in South America from 1949 to 2019 to suggest effective strategies for breeding in the future. The percentage of bulls historically increased. The average generational interval decreased to 11.78 years for the current population. Average inbreeding (F) and coancestry (C) are low and show a historically increasing trend (0.001% to 0.002%, respectively). The degree of nonrandom mating (α) increased from -0.0001 to 0.0001 denoting a change in the trend to mate similar individuals. The average relatedness coefficient (ΔR) increased in the current period from 0.002% to 0.004%. A single ancestor explained 4.55% to 7.22% of the population's gene pool. While the effective population size based on the individual inbreeding rate (NeFi) was 462.963, when based on the individual coancestry rate (NeCi), it was 420.168. Genetic diversity loss is small and mainly ascribed to bottlenecks (0.12%) and to unequal contributions of the founders (0.02%). Even if adequate levels of diversity can be found, practices that consider the overuse of individual bulls (conditioned by nature or not), could lead to a long-term reduction in diversity. The present results permit tailoring genetic management strategies that are perfectly adapted to the needs that the population demands internationally.

2.
Ecol Evol ; 8(22): 11143-11157, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519432

RESUMO

Euterpe precatoria, known as açaí do Amazonas, is a regionally important palm of the Amazon rainforest for the fruit production through extractive agriculture. Little information is available with regard to genetic diversity, gene flow, and spatial genetic structure (SGS) of açaí populations, which are essential for the use, management, and conservation of genetic resources of the species. This research aimed to assess the genetic diversity, inbreeding level, SGS, and gene flow in four ontogenetic stages of a natural E. precatoria population in the Brazilian Amazon, based on 18 microsatellite loci. The study was carried out in a natural population dispersed in an area of about 10 ha. Leaf tissues of 248 plants were mapped and sampled and classified into four ontogenetic stages: reproductive (59), immature (70), young (60), and seedling (59). Genetic diversity indices were high for all ontogenetic stages. The fixation index (F) for all ontogenetic stages was not significantly different from zero, indicating the absence of inbreeding. A significant SGS was found for all ontogenetic stages (68-110 m), indicating seed dispersal over short distances. Paternity analysis detected pollen immigration of 39.1%, a selfing rate of 4.2%, and a mean pollen dispersal distance within the population of 531 m. The results indicate substantial allele input in the population via pollen immigration, contributing to the maintenance of the genetic diversity of the population. However, within a population, the renewal with new progenies selected from seed plants spaced at least 110 m apart is important to avoid collecting seeds from related plants.

3.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875297

RESUMO

Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.


Assuntos
Fluxo Gênico , Genótipo , Polimorfismo de Nucleotídeo Único , Brasil , Colúmbia Britânica , Cidades , Análise por Conglomerados , Nova Orleans , Cidade de Nova Iorque
4.
Animal ; : 1-10, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467044

RESUMO

Genetic improvement, without control of inbreeding, can go to loss of genetic variability, reducing the potential for genetic gains in the domestic populations. The aim of this study was to analyze the population structure and the inbreeding depression in Campolina horses. Phenotype information from 43 465 individuals was analyzed, data provided by the Campolina Breeders Association. A pedigree file containing 107 951 horses was used to connected the phenotyped individuals. The inbreeding coefficient was performed by use of the diagonal of the relationship matrix and the genealogical parameters were computed using proper softwares. The effective population size was estimated based on the rate of inbreeding and census information, and the stratification of the population was verified by the average relationship coefficient between animals born in different regions of Brazil. The effects of inbreeding on morphological traits were made by the use of inbreeding coefficient as a covariate in the model of random regression. The inbreeding coefficient increased from 1990 on, impacting effective population size and, consequently, shrinking genetic variability. The paternal inbreeding was greater than maternal, which may be attributed to the preference for inbred animals in reproduction. The average genetic relationship coefficient of animals born in different states was lower than individuals born within the same state. The increase in the inbreeding coefficient was negatively associated with all studied traits, showing the importance to avoid genetic losses in the long term. Although results do not indicate a severe narrowing of the population until the present date, the average relationship coefficient shows signs of increase, which could cause a drastic reduction in genetic variability if inbred mating is not successfully controlled in the Campolina horse population.

5.
BMC Genet ; 17(1): 63, 2016 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108235

RESUMO

BACKGROUND: Astrocaryum aculeatum is a palm tree species native to the tropical regions of South America, exploited commercially by local farmers for the pulp extracted from its fruits. The objective of this research was to compare the genetic diversity between adult plants and seedlings from open-pollinated seeds, quantify the pollen flow and dispersal, the spatial genetic structure, and the effective size of a population that has been continuously harvested for its fruits. The study was carried out in a natural population of A. aculeatum distributed over approximately 8 ha in the State of Amazonas (Brazil), separated by 400 m from the closest neighboring population. In total, 112 potential pollen donors, 12 mother plants and 120 offspring were mapped and genotyped. RESULTS: Genetic diversity was high for parents and the offspring. The fixation indexes for adults (F = -0.035) and offspring (F = -0.060) were negative and not significant. A significant spatial genetic structure was detected for the adult plants (up to the distance of 45 m) indicating short-distance seed dispersal. Paternity analysis detected 9.2 % of pollen immigration and the average distance of pollination within the population was 81 m. The average effective pollination neighborhood area between plants was 1.51 ha. CONCLUSIONS: Our results indicate that substantial introduction of new alleles has occurred in the population through pollen immigration, contributing to the maintenance of genetic diversity. Conservation efforts aimed at maintaining the gene pool of the current population or establishing new populations should utilize offspring from mother plants selected to be spaced by at least 50 m to prevent collecting seeds from relatives.


Assuntos
Arecaceae/genética , Variação Genética , Pólen/genética , Polinização/genética , Fluxo Gênico , Genética Populacional , Repetições de Microssatélites , Dispersão de Sementes
6.
Genet Mol Biol ; 33(4): 650-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637573

RESUMO

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individuals genome derived from ancestry, pigs with at least 70% of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (F(ST) 0.125) and the F(IS) value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.

7.
Genet. mol. biol ; Genet. mol. biol;33(4): 650-656, 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-571527

RESUMO

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individuals genome derived from ancestry, pigs with at least 70 percent of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (F ST 0.125) and the F IS value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA