Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Pract ; 11(2): 287-292, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066835

RESUMO

Poor management of either type 1 diabetes or haemophilia A can lead to complications such as organ dysfunction and haemarthropathy. Here, we describe the case of an 8-year-old boy diagnosed with severe haemophilia A shortly after birth. At 2 years old, he was also diagnosed with type 1 diabetes. After six years, the haemophilia treatment was changed from a plasma-derived factor VIII (FVIII) concentrate (octanate®, Octapharma, Lachen, Switzerland) to Nuwiq® (simocotocog alfa, Octapharma, Lachen, Switzerland), a recombinant FVIII (rFVIII) product from a human cell line, which allowed for a personalised treatment schedule that supported good adherence. The dosing regimen could be reduced to two weekly rFVIII infusions. The patient has experienced no spontaneous bleeds since switching to rFVIII and shows no signs of joint damage after over seven years of FVIII prophylaxis. rFVIII was well tolerated, with no treatment-related adverse events observed. This case illustrates the importance of treatment personalisation for young patients and their families managing concomitant diseases.

2.
Methods Mol Biol ; 1674: 195-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28921438

RESUMO

Coagulation factor VIII is one of the largest proteins attempted to be expressed in recombinant form. A very complex and labile protein which has a very short half-live and need a fast and efficient purification chain. Here, we describe a simple purification sequence using multimodal Capto MMC, affinity FVIII select and ion exchange SP-Fastflow chromatography steps without subjecting the target molecule to mechanical and temperature stress, separating impurities from rFVIII using net charge, hydrophobicity, and affinity of the molecules.


Assuntos
Fator VIII/isolamento & purificação , Fígado/química , Proteínas Recombinantes/isolamento & purificação , Linhagem Celular , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Meia-Vida , Humanos
3.
Methods Mol Biol ; 1674: 275-282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28921445

RESUMO

Coagulation factor VIII (FVIII) is an important glycoprotein involved in the extrinsic coagulation cascade. Mutations in FVIII gene results in hemophilia A, a recessive coagulation disorder that is clinically managed by administration of purified FVIII from blood donors or recombinant FVIII. Because of its fundamental therapeutic application, biotechnological production of FVIII requires rigid quality control and monitoring in patients and clinical trials. Here, we describe a protocol for a mass spectrometry based approach termed selective reaction monitoring (SRM) as an important alternative tool for accurate and sensitive quantitation of purified or recombinant FVIII.


Assuntos
Fator VIII/química , Glicoproteínas/química , Espectrometria de Massas/métodos , Controle de Qualidade
4.
Mol Biotechnol ; 58(6): 404-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27126696

RESUMO

Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6.


Assuntos
Fator VIII/química , Fator VIII/metabolismo , Furina/metabolismo , Animais , Células CHO , Cricetulus , Fator VIII/genética , Humanos , Pró-Proteína Convertases/metabolismo , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/metabolismo , Subtilisinas/metabolismo
5.
Biotechnol Appl Biochem ; 62(3): 343-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25082654

RESUMO

Factor VIII (FVIII) is a glycoprotein that plays an essential role in blood coagulation cascade. Purification of plasma-derived coagulation FVIII by direct application of plasma to a chromatographic column is a method of choice. Anion exchange column is a very powerful method because FVIII is strongly adsorbed, resulting in good activity recovery and high purification factor. However, vitamin-K-dependent coagulation factors coelute with FVIII. In the present study, we report the separation of vitamin-K-dependent coagulation proteins from FVIII using immobilized metal affinity chromatography (IMAC) with Cu(2+) as the metal ligand. Plasma was directly loaded to a Q Sepharose Big Beads column, and FVIII was recovered with 65% activity and a purification factor of approximately 50 times. Then, the Q Sepharose eluate was applied to the IMAC-Cu(2+) column, and FVIII was eluted with 200 mM imidazole, with up to 85% recovery of activity. The mass recovery in this fraction was less than 10% of the applied mass of protein. Vitamin-K-dependent proteins elute with imidazole concentrations of lower than 60 mM. Because of the difference in affinity, FVIII could be completely separated from the vitamin-K-dependent proteins in the IMAC column.


Assuntos
Cromatografia de Afinidade/métodos , Cobre/química , Fator VIII/isolamento & purificação , Fator VIII/química , Fator VIII/metabolismo , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA