Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Infect Med (Beijing) ; 3(2): 100108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966059

RESUMO

Background: An epizootic of highly pathogenic avian influenza A (H5N1) has spread worldwide since 2022. Even though this virus has been extensively studied for many decades, little is known about its evolution in South America. Methods: Here, we describe the sequencing and characterization of 13 H5N1 genomes collected from wild birds, poultry, and wild mammals in Peru during the genomic surveillance of this outbreak. Results: The samples belonged to the highly pathogenic avian influenza (H5N1) 2.3.4.4b clade. Chilean and Peruvian samples clustered in the same group and therefore share a common ancestor. An analysis of the hemagglutinin and neuraminidase genes detected new mutations, some dependent upon the host type. Conclusions: The genomic surveillance of highly pathogenic avian influenza is necessary to promote the One Health policy and to overcome the new problems entailed by climate change, which may alter the habitats of resident and migratory birds.

2.
Emerg Infect Dis ; 30(8): 1514-1522, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043385

RESUMO

Leptospirosis is a common but underdiagnosed zoonosis. We conducted a 1-year prospective study in La Guaira State, Venezuela, analyzing 71 hospitalized patients who had possible leptospirosis and sampling local rodents and dairy cows. Leptospira rrs gene PCR test results were positive in blood or urine samples from 37/71 patients. Leptospira spp. were isolated from cultured blood or urine samples of 36/71 patients; 29 had L. interrogans, 3 L. noguchii, and 4 L. venezuelensis. Conjunctival suffusion was the most distinguishing clinical sign, many patients had liver involvement, and 8/30 patients with L. interrogans infections died. The Leptospira spp. found in humans were also isolated from local rodents; L. interrogans and L. venezuelensis were isolated from cows on a nearby, rodent-infested farm. Phylogenetic clustering of L. venezuelensis isolates suggested a recently expanded outbreak strain spread by rodents. Increased awareness of leptospirosis prevalence and rapid diagnostic tests are needed to improve patient outcomes.


Assuntos
Surtos de Doenças , Leptospira , Leptospirose , Filogenia , Roedores , Animais , Leptospirose/epidemiologia , Leptospirose/veterinária , Leptospirose/microbiologia , Leptospirose/diagnóstico , Humanos , Venezuela/epidemiologia , Bovinos , Leptospira/genética , Leptospira/isolamento & purificação , Leptospira/classificação , Feminino , Roedores/microbiologia , Adulto , Masculino , Pessoa de Meia-Idade , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Adolescente , Leptospira interrogans/genética , Leptospira interrogans/isolamento & purificação , Leptospira interrogans/classificação , Adulto Jovem , Estudos Prospectivos , Criança , Idoso , Doenças Endêmicas , Zoonoses/epidemiologia , Zoonoses/microbiologia , Pré-Escolar
3.
mSystems ; 9(8): e0131823, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38980056

RESUMO

Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.


Assuntos
Estuários , Golfo do México , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água do Mar/química , Louisiana , Microbiota , Microbiologia da Água , Ecossistema , Salinidade
4.
Microbiol Spectr ; 12(7): e0394723, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864670

RESUMO

Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea. IMPORTANCE: Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Infecção Hospitalar , Diarreia , Variação Genética , Tipagem de Sequências Multilocus , Filogenia , Humanos , Clostridioides difficile/genética , Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Diarreia/microbiologia , Diarreia/epidemiologia , México/epidemiologia , Criança , Toxinas Bacterianas/genética , Adulto , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Proteínas de Bactérias/genética , Enterotoxinas/genética , Masculino , Pré-Escolar , Feminino , Prevalência , Adolescente , Sequenciamento Completo do Genoma , Fenótipo , Genoma Bacteriano/genética , Lactente , Pessoa de Meia-Idade , Genômica
5.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456839

RESUMO

Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.


Assuntos
Candida albicans , Candida , Humanos , Candida/genética , Candida albicans/genética , Candida tropicalis/genética , Evolução Biológica
6.
Emerg Microbes Infect ; 13(1): 2332667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38494746

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões/virologia , Humanos , Chile , Influenza Humana/virologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/classificação , Filogenia , Influenza Aviária/virologia , Influenza Aviária/transmissão
7.
Antonie Van Leeuwenhoek ; 117(1): 59, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507089

RESUMO

The family Vibrionaceae is classified into many clades based on their phylogenetic relationships. The Ponticus clade is one of its clades and consists of four species, Vibrio panuliri, V. ponticus, V. rhodolitus, and V. taketomensis. Two strains, CAIM 703 and CAIM 1902, were isolated from the diseased spotted rose snapper external lesion (Lutjanus guttatus), they were analyzed to determine their taxonomic position, a phylogenetic analysis was performed based on the 16S rRNA sequences proved that the two strains are members of the genus Vibrio and they belong to the Ponticus clade. Then, a phylogenomic analysis was performed with four type strains and four reference strains isolated from marine organisms and aquatic environments. Multilocus Sequence Analysis (MLSA) of 139 single-copy genes showed that CAIM 703 and CAIM 1902 belong to V. panuliri. The 16S rRNA sequence similarity value between CAIM 703 and CAIM 1902 was 99.61%. The Ponticus clade species showed Average Nucleotide Identity (ANI) values between 78 to 80% against the two strains for ANIb, except V. panuliri LBS2T (99% and 100% similarity). Finally, this analysis represents the first phylogenomic analysis of the Ponticus clade where V. panuliri strains are reported from Mexico.


Assuntos
Vibrio , Animais , Filogenia , RNA Ribossômico 16S/genética , Peixes , Tipagem de Sequências Multilocus , Organismos Aquáticos , Análise de Sequência de DNA , DNA Bacteriano/genética
8.
Zookeys ; 1191: 129-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384426

RESUMO

The ants of the genus Rhopalothrix are diverse in the Neotropical region, with 14 of the 16 described species. Based on museum material and recent fieldwork, Rhopalothrix ants in Colombia were reviewed. Morphological analysis of the workers allowed delimitation of six species, including two new species, Rhopalothrixmandibularis Guerrero & Grajales, sp. nov. and Rhopalothrixmariaemirae Tocora, Fiorentino & Fernández, sp. nov. A new combination Rhopalothrixamaticomb. nov. is proposed for Eurhopalothrixamati. A worker-based taxonomic key, high-definition images of the workers, and a distribution map of all Rhopalothrix species present in Colombia are provided.

9.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337936

RESUMO

A synoptic compendium of the legumes of the Mimosoideae clade in northeastern Mexico is presented for the first time, including changes in their botanical nomenclature and retypification of genera. Furthermore, based on new information recently published, the taxonomic limits of several new genera segregated from Acacia (Acaciella, Mariosousa, Senegalia, and Vachellia) and Prosopis (Neltuma and Strombocarpa) are clarified and included. Based on field work, collection of botanical samples over the past 30 years, and reviewing botanical materials in national and international herbaria, we have completed the diversity of legumes of the Mimosoideae clade of northeastern Mexico. Three tribes (Acacieae, Ingeae, and Mimosaeae), 22 genera, 92 species, and 19 infraspecific categories were recorded. Only the genus Painteria is endemic to Mexico. Eighty-eight species are native to Mexico, and four are exotic: Acacia salicina, Neptunia prostrata, Neltuma chilensis and Albizia lebbeck. Twenty-eight species are endemic to Mexico, nine species are endemic to northeastern Mexico, and four species are endemic to only one state in Mexico. The 22 registered genera represent 44% and 65% of the generic flora of the Mimosoideae clade for Mexico and the planet, respectively, while the 92 species registered represent 3% and 18% of the species of the clade Mimosoideae for the planet and Mexico, respectively. According to the new nomenclature of legumes, the number of genera in the Mimosoideae clade in northern Mexico has increased from 19 to 24.

10.
Viruses ; 16(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400049

RESUMO

Dengue virus (DENV) is a prominent arbovirus with global spread, causing approximately 390 million infections each year. In Brazil, yearly epidemics follow a well-documented pattern of serotype replacement every three to four years on average. Araraquara, located in the state of São Paulo, has faced significant impacts from DENV epidemics since the emergence of DENV-1 in 2010. The municipality then transitioned from low to moderate endemicity in less than 10 years. Yet, there remains an insufficient understanding of virus circulation dynamics, particularly concerning DENV-1, in the region, as well as the genetic characteristics of the virus. To address this, we sequenced 37 complete or partial DENV-1 genomes sampled from 2015 to 2022 in Araraquara. Then, using also Brazilian and worldwide DENV-1 sequences we reconstructed the evolutionary history of DENV-1 in Araraquara and estimated the time to the most recent common ancestor (tMRCA) for serotype 1, for genotype V and its main lineages. Within the last ten years, there have been at least three introductions of genotype V in Araraquara, distributed in two main lineages (L Ia and L Ib, and L II). The tMRCA for the first sampled lineage (2015/2016 epidemics) was approximately 15 years ago (in 2008). Crucially, our analysis challenges existing assumptions regarding the emergence time of the DENV-1 genotypes, suggesting that genotype V might have diverged more recently than previously described. The presence of the two lineages of genotype V in the municipality might have contributed to the extended persistence of DENV-1 in the region.


Assuntos
Vírus da Dengue , Dengue , Humanos , Filogenia , Vírus da Dengue/genética , Dengue/epidemiologia , Brasil/epidemiologia , Genótipo
11.
BMC Ecol Evol ; 23(1): 58, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770825

RESUMO

BACKGROUND: Dengue is a mosquito-borne viral disease posing a significant threat to public health. Dengue virus (DENV) evolution is often characterized by lineage turnover, which, along with ecological and immunological factors, has been linked to changes in dengue phenotype affecting epidemic dynamics. Utilizing epidemiologic and virologic data from long-term population-based studies (the Nicaraguan Pediatric Dengue Cohort Study and Nicaraguan Dengue Hospital-based Study), we describe a lineage turnover of DENV serotype 2 (DENV-2) prior to a large dengue epidemic in 2019. Prior to this epidemic, Nicaragua had experienced relatively low levels of DENV transmission from 2014 to 2019, a period dominated by chikungunya in 2014/15 and Zika in 2016. RESULTS: Our phylogenetic analyses confirmed that all Nicaraguan DENV-2 isolates from 2018 to 2019 formed their own clade within the Nicaraguan lineage of the Asian/American genotype. The emergence of the new DENV-2 lineage reflects a replacement of the formerly dominant clade presiding from 2005 to 2009, a lineage turnover marked by several shared derived amino acid substitutions throughout the genome. To elucidate evolutionary drivers of lineage turnover, we performed selection pressure analysis and reconstructed the demographic history of DENV-2. We found evidence of adaptive evolution by natural selection at the codon level as well as in branch formation. CONCLUSIONS: The timing of its emergence, along with a statistical signal of adaptive evolution and distinctive amino acid substitutions, the latest in the NS5 gene, suggest that this lineage may have increased fitness relative to the prior dominant DENV-2 strains. This may have contributed to the intensity of the 2019 DENV-2 epidemic, in addition to previously identified immunological factors associated with pre-existing Zika virus immunity.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Criança , Animais , Vírus da Dengue/genética , Dengue/epidemiologia , Nicarágua/epidemiologia , Filogenia , Estudos de Coortes
12.
Trop Med Infect Dis ; 8(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37624320

RESUMO

The opportunistic fungal pathogens belonging to the Candida haemulonii complex and the phylogenetically related species Candida auris are well-known for causing infections that are difficult to treat due to their multidrug-resistance profiles. Candida auris is even more worrisome due to its ability to cause outbreaks in healthcare settings. These emerging yeasts produce a wide range of virulence factors that facilitate the development of the infectious process. In recent years, the aggregative phenotype has been receiving attention, as it is mainly associated with defects in cellular division and its possible involvement in helping the fungus to escape from the host immune responses. In the present study, we initially investigated the aggregation ability of 18 clinical isolates belonging to the C. haemulonii species complex (C. haemulonii sensu stricto, C. duobushaemulonii, and C. haemulonii var. vulnera) and C. auris. Subsequently, we evaluated the effects of physicochemical factors on fungal aggregation competence. The results demonstrated that cell-to-cell aggregation was a typically time-dependent event, in which almost all studied fungal isolates of both the C. haemulonii species complex and C. auris exhibited high aggregation after 2 h of incubation at 37 °C. Interestingly, the fungal cells forming the aggregates remained viable. The aggregation of all isolates was not impacted by pH, temperature, ß-mercaptoethanol (a protein-denaturing agent), or EDTA (a chelator agent). Conversely, proteinase K, trypsin, and sodium dodecyl sulfate (SDS) significantly diminished the fungal aggregation. Collectively, our results demonstrated that the aggregation ability of these opportunistic yeast pathogens is time-dependent, and surface proteins and hydrophobic interactions seem to mediate cell aggregation since the presence of proteases and anionic detergents affected the aggregation capability. However, further studies are necessary to better elucidate the molecular aspects of this intriguing phenomenon.

14.
Brittonia ; 75(2): 180-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317680

RESUMO

Macrolobium paulobocae is presented as a new species of the legume subfamily Detarioideae. It is restricted to seasonally flooded igapó forests in the Central Amazon. We provide a description, illustration, photographs, and a distribution map of the new species, as well as a table of comparative morphology with similar, likely phylogenetically related species. The epithet is in honor of Paulo Apóstolo Costa Lima Assunção, or Paulo Boca, a great Amazonian botanist, victim of COVID-19 in January 2021.

15.
PhytoKeys ; 227: 9-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287938

RESUMO

Piperquinchasense is described and illustrated as a new species occurring in the understory of wet montane forest of the middle Magdalena Valley in Colombia, the easternmost portion of the Chocó Region. Its relationships are discussed with related taxa from the Macrostachys clade. An identification key for 35 Neotropical Piper species with peltate leaves is provided.


ResumenPiperquinchasense se describe e ilustra como una nueva especie que ocurre en el sotobosque de bosques húmedos montanos del valle medio del Magdalena en Colombia, la porción más oriental del Chocó Biogeográfico. Se discuten sus relaciones con otras especies del clado Macrostachys. Se presenta una clave de identificación para 35 especies de Piper Neotropical con hojas peltadas.

16.
Rev. argent. microbiol ; Rev. argent. microbiol;55(2): 2-2, jun. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449400

RESUMO

Abstract Escherichia coli O157:H7 is a foodborne pathogen implicated in numerous outbreaks worldwide that has the ability to cause extra-intestinal complications in humans. The Enteropathogens Division of the Central Public Health Laboratory (CPHL) in Paraguay is working to improve the genomic characterization of Shiga toxin-producing E. coli (STEC) to enhance laboratory-based surveillance and investigation of foodborne disease outbreaks. Whole genome sequencing (WGS) is proposed worldwide to be used in the routine laboratory as a high-resolution tool that allows to have all the results in a single workflow. This study aimed to carry out for the first time, the genomic characterization by WGS of nine STEC O157:H7 strains isolated from human samples in Paraguay. We were able to identify virulence and resistance mechanisms, MLST subtype, and even establish the phylogenetic relationships between isolates. Furthermore, we detected the presence of strains belonging to hypervirulent clade 8 in most of the isolates studied.


Resumen Escherichia coli O157:H7 es un patógeno transmitido por alimentos implicado en numerosos brotes en todo el mundo y es capaz de causar complicaciones extraintestinales en humanos. La sección de «Enteropatógenos¼ del Laboratorio Central de Salud Pública trabaja en mejorar la caracterización genómica de STEC, de modo de potenciar la vigilancia laboratorial y la investigación de brotes de enfermedades transmitidas por alimentos. La secuenciación de genoma completo (WGS, por sus siglas en inglés) se propone a nivel mundial como una herramienta de alta resolución para ser utilizada en el laboratorio de rutina, ya que permite obtener todos los resultados en un único proceso. El objetivo de este trabajo fue llevar a cabo, por primera vez, la caracterización genómica por WGS de nueve cepas STEC O157:H7 aisladas en Paraguay a partir de muestras de origen humano. Pudimos identificar los factores de virulencia, los mecanismos de resistencia, el subtipo MLST, e incluso pudimos establecer la relación filogenética entre los aislamientos. Además, detectamos que la mayoría de las cepas pertenecían al clado hipervirulento 8.

17.
Antonie Van Leeuwenhoek ; 116(7): 721-738, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227602

RESUMO

Global warming has a strong impact on the polar regions, in particular, the Antarctic Peninsula and nearby islands. Methane (CH4) is a major factor in climate change and mitigation of CH4 emissions can be accomplished through microbial oxidation by methanotrophic bacteria. Understanding this biological process is crucial given the shortage of research carried out in this geographical area. The aim of this study was to characterise psychrophilic enrichment cultures of aerobic methanotrophs obtained from lake sediments of the Fildes Peninsula (King George Island, South Shetland Islands) and revealing the distribution of the genus Methylobacter in different lake sediments of the peninsula. Four stable methanotrophic enrichment cultures were obtained and analysed by metagenome-assembled genomes (MAGs). The phylogeny of methanotroph MAGs recovered from these enrichment cultures based on the 16S rRNA gene showed that K-2018 MAG008 and D1-2020 MAG004Ts clustered within the Methylobacter clade 2, with high similarity to Methylobacter tundripaludum SV96T (97.88 and 98.56% respectively). However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with M. tundripaludum were < 95% (84.8 and 85.0%, respectively) and < 70% (30.2 and 30.3%, respectively), suggesting that they represent a putative novel species for which the name 'Ca. Methylobacter titanis' is proposed. This is the first species of clade 2 of the genus Methylobacter obtained from Antarctica. The bacterial diversity assessed by 16S rRNA gene sequencing of 21 samples of different lakes (water column and sediments) revealed 54 ASVs associated with methanotrophs and the genus Methylobacter as the most abundant. These results suggest that aerobic methanotrophs belonging to the Methylobacter clade 2 would be the main responsible for CH4 oxidation in these sediments.


Assuntos
Lagos , Methylococcaceae , Lagos/microbiologia , Regiões Antárticas , RNA Ribossômico 16S/genética , Metano , Oxirredução , DNA , Filogenia , Methylococcaceae/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-37167075

RESUMO

A novel Vibrio strain (CAIM 722T=SW9T=DSM 24596T) was isolated in 2003 from water of a shrimp (Penaeus vannamei) culture pond located in Los Mochis, Sinaloa, Mexico, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence clustered within those of the genus Vibrio, showing high similarity to the type strains of the Porteresiae clade. Multilocus sequence analysis using eight housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, topA and 16S rRNA) and phylogenetic analysis with 139 single-copy genes showed that the strain forms an independent branch. Whole genome sequencing and genomic analyses (average nucleotide identity, OrthoANI, average amino acid identity and in silico DNA-DNA hybridization) produced values well below the thresholds for species delineation with all methods tested. In addition, a phenotypic characterization was performed to support the description and differentiation of the novel strain from related taxa. The results obtained demonstrate that the strain represent a novel species, for which the name Vibrio eleionomae sp. nov. is proposed.


Assuntos
Penaeidae , Vibrio , Animais , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Lagoas , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , DNA Bacteriano/genética , Composição de Bases , Água
19.
J Fungi (Basel) ; 9(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233242

RESUMO

Sporotrichosis is known as a subacute or chronic infection, which is caused by thermodimorphic fungi of the genus Sporothrix. It is a cosmopolitan infection, which is more prevalent in tropical and subtropical regions and can affect both humans and other mammals. The main etiological agents causing this disease are Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa, which have been recognized as members of the Sporothrix pathogenic clade. Within this clade, S. brasiliensis is considered the most virulent species and represents an important pathogen due to its distribution and prevalence in different regions of South America, such as Brazil, Argentina, Chile, and Paraguay, and Central American countries, such as Panama. In Brazil, S. brasiliensis has been of great concern due to the number of zoonotic cases that have been reported over the years. In this paper, a detailed review of the current literature on this pathogen and its different aspects will be carried out, including its genome, pathogen-host interaction, resistance mechanisms to antifungal drugs, and the caused zoonosis. Furthermore, we provide the prediction of some putative virulence factors encoded by the genome of this fungal species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA