Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124963

RESUMO

Plant glucanases and chitinases are defense proteins that participate in pathogenesis; however, very little is known about the glucanase (GLUC) and chitinase (CHIT) gene families in mango. Some mango cultivars are of great economic importance and can be affected by anthracnose, a postharvest disease caused by fungi of the genus Colletotrichum spp. This study identified and characterized 23 putative glucanases and 16 chitinases in the mango genome cv. Tommy Atkins. We used phylogenetic analyses to classify the glucanases into three subclasses (A, B, and C) and the chitinases into four classes (I, II, IV, and V). Information on the salicylic, jasmonic acid, and ethylene pathways was obtained by analyzing the cis-elements of the GLUC and CHIT class I and IV gene promoters. The expression profile of GLUC, CHIT class I, and CHIT class IV genes in mango cv. Ataulfo inoculated with two Colletotrichum spp. revealed different profile expression related to these fungi's level of virulence. In general, this study provides the basis for the functional validation of these target genes with which the regulatory mechanisms used by glucanases and chitinases as defense proteins in mango can be elucidated.


Assuntos
Quitinases , Colletotrichum , Regulação da Expressão Gênica de Plantas , Mangifera , Filogenia , Doenças das Plantas , Colletotrichum/patogenicidade , Colletotrichum/genética , Mangifera/microbiologia , Mangifera/genética , Quitinases/genética , Quitinases/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica
2.
Rev Argent Microbiol ; 56(1): 79-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37640657

RESUMO

The application of pyrethroids and carbamates represents an environmental risk and may exert adverse effects on beneficial microorganisms such as Trichoderma, which contribute to the biocontrol of several fungal phytopathogens. This research evaluated the tolerance of several strains of Trichoderma to a selected culture medium contaminated with a commercial insecticide (H24®) composed of pyrethroids, permethrin and prallethrin, and carbamate propoxur, and determined the influence of this insecticide on the release of enzymes such as chitinases, peroxidases, and endoglucanases by a consortium of selected Trichoderma strains grown in liquid culture medium. Four out of 10 Trichoderma strains showed tolerance to 200ppm (∼48.3% of growth) of the commercial insecticide after 96h of exposure to a contaminated solid medium. After eight days of growth in liquid culture, the insecticide enhanced extracellular protein content and peroxidase activities in the Trichoderma consortium but decreased both chitinase and glucanase activities. These fungal responses should be considered when implementing strategies that combine alternative pesticides and fungal biocontrollers for managing fungal phytopathogens.


Assuntos
Quitinases , Inseticidas , Piretrinas , Trichoderma , Trichoderma/metabolismo , Inseticidas/farmacologia , Piretrinas/farmacologia , Quitinases/metabolismo , Carbamatos , Meios de Cultura
3.
Int J Mol Sci, v. 25, n. 17, 9250, ago. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5467

RESUMO

This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.

4.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38057942

RESUMO

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Assuntos
Quitinases , Humanos , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnologia , Fungos
5.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630667

RESUMO

Aspergillus flavus has been found to be an effective entomopathogenic fungus for various arthropods, including ticks. In particular, natural fungal infections in cattle ticks show promise for biocontrol of the Rhipicephalus (Boophilus) microplus tick, which is a major ectoparasite affecting cattle worldwide. Our study aimed to elucidate the specific entomopathogenic virulence factors encoded in the genome of an A. flavus strain isolated from naturally infected cattle ticks. We performed morphological and biochemical phenotyping alongside complete genome sequencing, which revealed that the isolated fungus was A. flavus related to the L morphotype, capable of producing a range of gene-coded entomopathogenic virulence factors, including ribotoxin, aflatoxin, kojic acid, chitinases, killer toxin, and satratoxin. To evaluate the efficacy of this A. flavus strain against ticks, we conducted experimental bioassays using healthy engorged female ticks. A morbidity rate of 90% was observed, starting at a concentration of 105 conidia/mL. At a concentration of 107 conidia/mL, we observed a 50% mortality rate and a 21.5% inhibition of oviposition. The highest levels of hatch inhibition (30.8%) and estimated reproduction inhibition (34.64%) were achieved at a concentration of 108 conidia/mL. Furthermore, the tick larval progeny that hatched from the infected tick egg masses showed evident symptoms of Aspergillus infection after incubation.

6.
Braz. j. biol ; 83: 1-8, 2023. ilus, graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468881

RESUMO

Chitin and its derived products have immense economic value due to their vital role in various biological activities as well as biomedical and industrial application. Insects, microorganism and crustaceans are the main supply of chitin but the crustaceans shell like shrimp, krill, lobsters and crabs are the main commercial sources. Chitin content of an individual varies depending on the structures possessing the polymer and the species. In this study edible crabs’ shells (Callinectes sapidus) were demineralized and deproteinized resulting in 13.8% (dry weight) chitin recovery from chitin wastes. FTIR and XRD analyses of the experimental crude as well as purified chitins revealed that both were much comparable to the commercially purchased controls. The acid pretreatment ceded 54g of colloidal chitin that resulted in 1080% of the crude chitin. The colloidal chitin was exploited for isolation of eighty five chitinolytic bacterial isolates from different sources. Zone of clearance was displayed by the thirty five isolates (41.17%) succeeding their growth at pH 7 on colloidal chitin agar medium. Maximum chitinolytic activity i.e. 301.55 U/ml was exhibited by isolate JF70 when cultivated in extracted chitin containing both carbon and nitrogen. The study showed wastes of blue crabs can be utilized for extraction of chitin and isolation of chitinolytic bacteria that can be used to degrade chitin waste, resolve environmental pollution as well as industrial purpose.


A quitina e seus produtos derivados têm imenso valor econômico devido ao seu papel vital em várias atividades biológicas, bem como em aplicações biomédicas e industriais. Insetos, microrganismos e crustáceos são o principal suprimento de quitina, mas a casca dos crustáceos como camarão, krill, lagosta e caranguejo são as principais fontes comerciais. O conteúdo de quitina de um indivíduo varia dependendo das estruturas que possuem o polímero e da espécie. Neste estudo, as cascas de caranguejos comestíveis (Callinectes sapidus) foram desmineralizadas e desproteinizadas, resultando em 13,8% (peso seco) de recuperação de quitina a partir de resíduos de quitina. As análises de FTIR e XRD do bruto experimental, bem como das quitinas purificadas, revelaram que ambas eram muito comparáveis aos controles adquiridos comercialmente. O pré-tratamento com ácido cedeu 54 g de quitina coloidal que resultou em 1.080% da quitina bruta. A quitina coloidal foi analisada para isolamento de 85 isolados bacterianos quitinolíticos de diferentes fontes. A zona de eliminação foi exibida pelos 35 isolados (41,17%) que sucederam seu crescimento a pH 7 em meio de ágar de quitina coloidal. A atividade quitinolítica máxima, ou seja, 301,55 U / ml, foi exibida pelo isolado JF70 quando cultivado em quitina extraída contendo carbono e nitrogênio. O estudo mostrou que resíduos de caranguejos azuis podem ser utilizados para extração de quitina e isolamento de bactérias quitinolíticas que podem ser usadas para degradar resíduos de quitina, resolver a poluição ambiental e também para fins industriais.


Assuntos
Quitina/análise , Quitina/economia , Quitina/isolamento & purificação , Quitinases
7.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469097

RESUMO

Abstract Chitin and its derived products have immense economic value due to their vital role in various biological activities as well as biomedical and industrial application. Insects, microorganism and crustaceans are the main supply of chitin but the crustaceans shell like shrimp, krill, lobsters and crabs are the main commercial sources. Chitin content of an individual varies depending on the structures possessing the polymer and the species. In this study edible crabs shells (Callinectes sapidus) were demineralized and deproteinized resulting in 13.8% (dry weight) chitin recovery from chitin wastes. FTIR and XRD analyses of the experimental crude as well as purified chitins revealed that both were much comparable to the commercially purchased controls. The acid pretreatment ceded 54g of colloidal chitin that resulted in 1080% of the crude chitin. The colloidal chitin was exploited for isolation of eighty five chitinolytic bacterial isolates from different sources. Zone of clearance was displayed by the thirty five isolates (41.17%) succeeding their growth at pH 7 on colloidal chitin agar medium. Maximum chitinolytic activity i.e. 301.55 U/ml was exhibited by isolate JF70 when cultivated in extracted chitin containing both carbon and nitrogen. The study showed wastes of blue crabs can be utilized for extraction of chitin and isolation of chitinolytic bacteria that can be used to degrade chitin waste, resolve environmental pollution as well as industrial purpose.


Resumo A quitina e seus produtos derivados têm imenso valor econômico devido ao seu papel vital em várias atividades biológicas, bem como em aplicações biomédicas e industriais. Insetos, microrganismos e crustáceos são o principal suprimento de quitina, mas a casca dos crustáceos como camarão, krill, lagosta e caranguejo são as principais fontes comerciais. O conteúdo de quitina de um indivíduo varia dependendo das estruturas que possuem o polímero e da espécie. Neste estudo, as cascas de caranguejos comestíveis (Callinectes sapidus) foram desmineralizadas e desproteinizadas, resultando em 13,8% (peso seco) de recuperação de quitina a partir de resíduos de quitina. As análises de FTIR e XRD do bruto experimental, bem como das quitinas purificadas, revelaram que ambas eram muito comparáveis aos controles adquiridos comercialmente. O pré-tratamento com ácido cedeu 54 g de quitina coloidal que resultou em 1.080% da quitina bruta. A quitina coloidal foi analisada para isolamento de 85 isolados bacterianos quitinolíticos de diferentes fontes. A zona de eliminação foi exibida pelos 35 isolados (41,17%) que sucederam seu crescimento a pH 7 em meio de ágar de quitina coloidal. A atividade quitinolítica máxima, ou seja, 301,55 U / ml, foi exibida pelo isolado JF70 quando cultivado em quitina extraída contendo carbono e nitrogênio. O estudo mostrou que resíduos de caranguejos azuis podem ser utilizados para extração de quitina e isolamento de bactérias quitinolíticas que podem ser usadas para degradar resíduos de quitina, resolver a poluição ambiental e também para fins industriais.

8.
Braz. J. Biol. ; 83: 1-8, 2023. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: vti-765458

RESUMO

Chitin and its derived products have immense economic value due to their vital role in various biological activities as well as biomedical and industrial application. Insects, microorganism and crustaceans are the main supply of chitin but the crustaceans shell like shrimp, krill, lobsters and crabs are the main commercial sources. Chitin content of an individual varies depending on the structures possessing the polymer and the species. In this study edible crabs shells (Callinectes sapidus) were demineralized and deproteinized resulting in 13.8% (dry weight) chitin recovery from chitin wastes. FTIR and XRD analyses of the experimental crude as well as purified chitins revealed that both were much comparable to the commercially purchased controls. The acid pretreatment ceded 54g of colloidal chitin that resulted in 1080% of the crude chitin. The colloidal chitin was exploited for isolation of eighty five chitinolytic bacterial isolates from different sources. Zone of clearance was displayed by the thirty five isolates (41.17%) succeeding their growth at pH 7 on colloidal chitin agar medium. Maximum chitinolytic activity i.e. 301.55 U/ml was exhibited by isolate JF70 when cultivated in extracted chitin containing both carbon and nitrogen. The study showed wastes of blue crabs can be utilized for extraction of chitin and isolation of chitinolytic bacteria that can be used to degrade chitin waste, resolve environmental pollution as well as industrial purpose.(AU)


A quitina e seus produtos derivados têm imenso valor econômico devido ao seu papel vital em várias atividades biológicas, bem como em aplicações biomédicas e industriais. Insetos, microrganismos e crustáceos são o principal suprimento de quitina, mas a casca dos crustáceos como camarão, krill, lagosta e caranguejo são as principais fontes comerciais. O conteúdo de quitina de um indivíduo varia dependendo das estruturas que possuem o polímero e da espécie. Neste estudo, as cascas de caranguejos comestíveis (Callinectes sapidus) foram desmineralizadas e desproteinizadas, resultando em 13,8% (peso seco) de recuperação de quitina a partir de resíduos de quitina. As análises de FTIR e XRD do bruto experimental, bem como das quitinas purificadas, revelaram que ambas eram muito comparáveis aos controles adquiridos comercialmente. O pré-tratamento com ácido cedeu 54 g de quitina coloidal que resultou em 1.080% da quitina bruta. A quitina coloidal foi analisada para isolamento de 85 isolados bacterianos quitinolíticos de diferentes fontes. A zona de eliminação foi exibida pelos 35 isolados (41,17%) que sucederam seu crescimento a pH 7 em meio de ágar de quitina coloidal. A atividade quitinolítica máxima, ou seja, 301,55 U / ml, foi exibida pelo isolado JF70 quando cultivado em quitina extraída contendo carbono e nitrogênio. O estudo mostrou que resíduos de caranguejos azuis podem ser utilizados para extração de quitina e isolamento de bactérias quitinolíticas que podem ser usadas para degradar resíduos de quitina, resolver a poluição ambiental e também para fins industriais.(AU)


Assuntos
Quitina/análise , Quitina/economia , Quitina/isolamento & purificação , Quitinases
9.
Protein Pept Lett ; 29(10): 869-881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36056827

RESUMO

BACKGROUND: Chitinases are plant defense-related proteins with a high biotechnological potential to be applied in agriculture. OBJECTIVES: This study aimed to purify a chitinase from the latex of Ficus benjamina. METHODS: An antifungal class I chitinase, named FbLx-Chi-1, was purified from the latex of Ficus benjamina after precipitation with 30-60% ammonium sulfate and affinity chromatography on a chitin column and antifungal potential assay against phytopathogenic fungi important to agriculture. RESULTS: FbLx-Chi-1 has 30 kDa molecular mass, as estimated by SDS-PAGE and the optimal pH and temperature for full chitinolytic activity were 5.5 and 60ºC, respectively. FbLx-Chi-1 is a high pH-, ion-tolerant and thermostable protein. Importantly, FbLx-Chi-1 hindered the growth of the phytopathogenic fungi Colletotrichum gloeosporioides, Fusarium pallidoroseum, and Fusarium oxysporum. The action mode of FbLx-Chi-1 to hamper F. pallidoroseum growth seems to be correlated with alterations in the morphology of the hyphal cell wall, increased plasma membrane permeability, and overproduction of reactive oxygen species. CONCLUSION: These findings highlight the biotechnological potential of FbLx-Chi-1 to control important phytopathogenic fungi in agriculture. In addition, FbLx-Chi-1 could be further explored to be used in industrial processes such as the large-scale environmentally friendly enzymatic hydrolysis of chitin to produce its monomer N-acetyl-ß-D-glucosamine, which is employed for bioethanol production, in cosmetics, in medicine, and for other multiple applications.


Assuntos
Quitinases , Ficus , Antifúngicos/farmacologia , Antifúngicos/química , Látex , Ficus/metabolismo , Espécies Reativas de Oxigênio , Quitinases/farmacologia , Quitinases/química , Quitinases/metabolismo , Quitina/farmacologia , Quitina/química , Parede Celular/metabolismo , Membrana Celular/metabolismo
10.
Front Mol Biosci ; 8: 700797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532342

RESUMO

Paracoccin (PCN) is a bifunctional protein primarily present in the cell wall of Paracoccidioides brasiliensis, a human pathogenic dimorphic fungus. PCN has one chitinase region and four potential lectin sites and acts as both a fungal virulence factor and an immunomodulator of the host response. The PCN activity on fungal virulence, mediated by the chitinase site, was discovered by infecting mice with yeast overexpressing PCN (PCN-ov). PCN-ov are characterized by increased chitin hydrolysis, a narrow cell wall, and augmented resistance to phagocytes' fungicidal activity. Compared to wild-type (wt) yeast, infection with PCN-ov yeast causes a more severe disease, which is attributed to the increased PCN chitinase activity. In turn, immunomodulation of the host response was demonstrated by injecting, subcutaneously, recombinant PCN in mice infected with wt-P. brasiliensis. Through its carbohydrate binding site, the injected recombinant PCN interacts with Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) N-glycans on macrophages, triggers M1 polarization, and stimulates protective Th1 immunity against the fungus. The PCN-treatment of wt yeast-infected mice results in mild paracoccidioidomycosis. Therefore, PCN paradoxically influences the course of murine paracoccidioidomycosis. The disease is severe when caused by yeast that overexpress endogenous PCN, which exerts a robust local chitinase activity, followed by architectural changes of the cell wall and release of low size chito-oligomers. However, the disease is mild when exogenous PCN is injected, which recognizes N-glycans on systemic macrophages resulting in immunomodulation.

11.
J Inorg Biochem ; 216: 111316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421883

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.


Assuntos
Cobre/química , Proteínas de Insetos/química , Isópteros/enzimologia , Oxigenases de Função Mista/química , Modelos Moleculares , Animais , Cobre/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isópteros/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
12.
Rev. peru. biol. (Impr.) ; 28(1): e18353, Jan-Mar 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1289880

RESUMO

Abstract Bacteria and microbial enzymes are biocatalysts and can be used as an alternative to industrial chemical processes. The present study focused on isolating and identifying bacterial strains from shrimp waste, that produce amylases, lipases, proteases and chitinases with potential use on shrimp waste treatment. Thirtytwo bacterial strains were isolated, phenotypically characterized, and identified by the API system and the molecular analysis of the 16S rDNA. It was found that 28.13% of the isolated bacterial strains had amylolytic capacity, 87.50% lipolytic, 96.88% proteolytic and 28.13% chitinolytic capacity on agar plates with specific substrates. The genera Bacillus, Burkholderia, Ochrobactrum, Vibrio, Pseudomonas and Shewanella were identified. Bacteria with enzymatic capacities isolated in the present study, could be used to obtain by-products from shrimp waste as well as other industrial applications.


Resumen Las bacterias y enzimas microbianas son biocatalizadores y pueden ser usadas como alternativa en los procesos químicos industriales. El presente estudio se centró en aislar e identificar cepas bacterianas a partir de desechos de langostinos, capaces de producir amilasas, lipasas, proteasas y quitinasas, que tuvieran potencial aplicación en el tratamiento de residuos de langostinos. Se aisló treinta y dos cepas bacterianas, caracterizadas fenotípicamente e identificadas mediante el sistema API 20 y mediante análisis molecular basado en el ADNr 16S. Se encontró que el 28.13% de las cepas bacterianas aisladas tenían capacidad amilolítica, 87.50% lipolítica, 96.88% proteolítica y 28.13% capacidad quitinolítica en placas de agar con sustratos específicos. Los géneros identificados fueron Bacillus, Burkholderia, Ochrobactrum, Vibrio, Pseudomonas y Shewanella. Las bacterias con capacidades enzimáticas aisladas en el presente estudio, podrían ser usadas para obtener subproductos de los desechos de langostinos, así como en otras aplicaciones industriales.

13.
Front Microbiol ; 10: 2231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608044

RESUMO

LysM effectors play a relevant role during the plant colonization by successful phytopathogenic fungi, since they enable them to avoid either the triggering of plant defense mechanisms or their attack effects. Tal6, a LysM protein from Trichoderma atroviride, is capable of binding to complex chitin. However, until now its biological function is not completely known, particularly its participation in plant-Trichoderma interactions. We obtained T. atroviride Tal6 null mutant and Tal6 overexpressing strains and determined the role played by this protein during Trichoderma-plant interaction and mycoparasitism. LysM effector Tal6 from T. atroviride protects the hyphae from chitinases by binding to chitin of the fungal cell wall, increases the fungus mycoparasitic capacity, and modulates the activation of the plant defense system. These results show that beneficial fungi also employ LysM effectors to improve their association with plants.

14.
World J Microbiol Biotechnol ; 35(8): 114, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332537

RESUMO

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes. In this study we demonstrate the GlcNAc bioproduction from colloidal α-chitin using an enzyme cocktail containing endochitinases and exochitinases (chitobiosidases and N-acetyl-glucosaminidases). The enzyme cocktail was extracted after fermentation in a bioreactor by Aeromonas caviae CHZ306, a chitinolytic marine bacterium with great potential for chitinase production. Hydrolysis parameters were studied in terms of temperature, pH, enzyme and substrate concentration, and reaction time, achieving over 90% GlcNAc yield within 6 h. The use of colloidal α-chitin as substrate showed a substantial improvement of GlcNAc yields, when compared with ß-chitin and α-chitin polymorphs. Such result is directly related to a significant decrease in crystallinity and viscosity from natural α-chitin, providing the chitinase with greater accessibility to the depolymerized chains. This study provides valuable information on the GlcNAc bioproduction from chitin using an enzymatic approach, addressing the key points for its production, including the enzyme cocktail composition and the substrate structures.


Assuntos
Acetilglucosamina/biossíntese , Aeromonas caviae/enzimologia , Quitina/metabolismo , Quitinases/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Peso Molecular , Temperatura , Viscosidade , Difração de Raios X
15.
FEBS J ; 286(23): 4778-4796, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31291689

RESUMO

Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).


Assuntos
Agave/enzimologia , Quitinases/metabolismo , Sítios de Ligação , Quitinases/química , Quitinases/fisiologia , Cumarínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Termodinâmica
16.
Front Microbiol ; 10: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984118

RESUMO

Endophytes constitute plant-colonizing microorganisms in a mutualistic symbiosis relationship. They are found in most ecosystems reducing plant crops' biotic and abiotic stressors by stimulating immune responses, excluding plant pathogens by niche competition, and participating in antioxidant activities and phenylpropanoid metabolism, whose activation produces plant defense, structural support, and survival molecules. In fact, metabolomic studies have demonstrated that endophyte genes associated to specific metabolites are involved in plant growth promotion (PGP) by stimulating plant hormones production such as auxins and gibberellins or as plant protective agents against microbial pathogens, cancer, and insect pests, but eco-friendly and eco-safe. A number of metabolites of Gram-positive endophytes isolated from agriculture, forest, mangrove, and medicinal plants, mainly related to the Firmicutes phyla, possess distinctive biocontrol and plant growth-promoting activities. In general, Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism, thus representing high potential for PGP and crop management strategies. Furthermore, Actinobacteria have been shown to produce metabolites with antimicrobial and antitumor activities, useful in agriculture, medicine, and veterinary areas. The great endophytes diversity, their metabolites production, and their adaptation to stress conditions make them a suitable and unlimited source of novel metabolites, whose application could reduce agrochemicals usage in food and drugs production.

17.
PeerJ ; 7: e6102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30627485

RESUMO

Chitin is the second most abundant organic compound in nature and represents a rich carbon and nitrogen source that is primarily transformed by bacterial communities. Bacteria capable of gradually hydrolyzing chitin into N-acetylglucosamine monomers can have applications in the transformation of residues from shrimp and other crustaceans. The objective of the present study was to isolate, characterize and identify microorganisms with high chitinolytic activity. These microorganisms were isolated and characterized based on macro- and microscopic morphological traits. Strains were selected on colloidal chitin agar medium primarily based on a hydrolysis halo larger than 2 mm and a growing phase no longer than 6 days. Secondary selection consisted of semi-quantitative evaluation of chitinolytic activity with a drop dilution assay. From the above, ten strains were selected. Then, strain-specific activity was evaluated. The B4 strain showed the highest specific activity, which was 6,677.07 U/mg protein. Molecular identification indicated that the isolated strains belong to the species Stenotrophomonas maltophilia.

18.
Front Microbiol ; 10: 3032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993038

RESUMO

The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.

19.
Microbiol Res ; 218: 76-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454661

RESUMO

Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.


Assuntos
Endófitos/metabolismo , Enterobacter/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Mimosa/microbiologia , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Serratia/isolamento & purificação , Alternaria/crescimento & desenvolvimento , Quitinases/metabolismo , Endófitos/isolamento & purificação , Enterobacter/classificação , Enterobacter/genética , Fusarium/crescimento & desenvolvimento , Mimosa/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Serratia/classificação , Serratia/genética
20.
Biomed Pharmacother ; 97: 1147-1154, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29136953

RESUMO

The water-soluble protein fraction obtained from Plumeria pudica (LPPp) latex has previously been demonstrated to have anti-inflammatory and antinociceptive effects. In the present study, LPPp was tested for activity against diarrhea induced by castor oil, prostaglandin E2 (PGE2) or cholera toxin. Different doses of LPPp (10, 20 or 40mg/kg) significantly inhibited the percentage of diarrheal stools (31.18%, 42.97% and 59.70%, respectively) induced by castor oil. This event was followed by significant reduction of both intestinal fluid accumulation (31.42%; LPPp 40mg/kg) and intestinal transit (68.4%; LPPp 40mg/kg). The pretreatment of animals with LPPp (40mg/kg) prevented glutathione and malondialdehyde alterations induced by castor oil. The effects of LPPp against diarrhea induced by castor oil were lost when the fraction was submitted to protein denaturing treatment with heat. LPPp (40mg/kg) also inhibited the average volume of intestinal fluid induced by PGE2 (inhibition of 46.0%). Furthermore, LPPp (40mg/kg) prevented intestinal fluid secretion accumulation (37.7%) and chloride ion concentration (50.2%) induced by cholera toxin. In parallel, colorimetric assays demonstrated that proteinases, chitinases and proteinase inhibitors were found in LPPp. Our data suggest that the antidiarrheal effect of LPPp is due to its protein content and is probably associated with its anti-inflammatory properties.


Assuntos
Antidiarreicos/farmacologia , Apocynaceae/química , Diarreia/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas de Plantas/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antidiarreicos/administração & dosagem , Antidiarreicos/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Extratos Vegetais/administração & dosagem , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/isolamento & purificação , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA