Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 206: 114365, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34555633

RESUMO

Antidepressants are the pharmaceutical compounds used in the treatment of depression, anxiety disorders and all related disturbances promoted by genetic factors, environmental problems or modern lifestyles. Nonetheless, the inadequate ingestion of antidepressants provokes adverse effects in the human body and can contaminate the environment. For this reason, it is necessary to identify and quantify these compounds in biological fluids, natural water, wastewater, and pharmaceutical formulations. Consequently, this review presents the main electroanalytical techniques used in the analysis of antidepressants, indicating the advantages, which include low cost, suitable analytical parameters, simplified sample preparation steps, easy operation and reduced time for completion of the analysis. Reports in specialized literature, published from 2000 to 2020, are presented and some are discussed, demonstrating that the electroanalytical techniques can be employed, with success, in the determination of antidepressants, indicating alternative methodologies to improve analytical parameters and minimize the use and generation of toxic residues.


Assuntos
Técnicas Eletroquímicas , Águas Residuárias , Antidepressivos , Composição de Medicamentos , Eletrodos , Humanos
2.
Anal Bioanal Chem ; 411(15): 3269-3280, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31037371

RESUMO

A new electrode based on glassy carbon modified with an alginate film cross-linked with glutaraldehyde containing immobilized carbon black particles was successfully developed and applied for the determination of paraquat (PQ), a herbicide widely used for broadleaf weed control. Different polysaccharides (alginate, cellulose, pectin, starch, and chitosan) were investigated for the immobilization process, and alginate presented the highest chemical modifier potential for PQ determination. Additionally, the influence of chemical cross-linking agents (glutaraldehyde and epichlorohydrin) on the morphology, electrochemical response, and film stability was investigated. All experimental conditions were optimized, including the supporting electrolyte conditions (composition, pH, and concentration) and square wave voltammetry technical parameters. Under the optimized experimental conditions, the PQ analytical curve was linear from 0.4 to 2.0 mg L-1 and the limits of detection and quantification were 0.06 and 0.19 mg L-1, respectively. The proposed electrode is easy to obtain, stable, selective, sensitive, and low cost and was successfully applied for PQ determination in environmental and beverage samples. Graphical abstract.


Assuntos
Alginatos/química , Bebidas/análise , Carbono/química , Técnicas Eletroquímicas/instrumentação , Herbicidas/análise , Paraquat/análise , Poluentes Químicos da Água/análise , Reagentes de Ligações Cruzadas/química , Eletrodos , Monitoramento Ambiental/instrumentação , Análise de Alimentos/instrumentação , Limite de Detecção , Fuligem/química , Água/análise
3.
J Hazard Mater ; 330: 105-115, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28214399

RESUMO

A glassy carbon electrode was modified with magnetite and platinum nanoparticles stabilized with 3-n-propyl-4-picoline silsesquioxane chloride. This chemically-modified electrode is proposed for the first time for the individual or simultaneous electrochemical detection of nitrophenol isomers. Nanoparticles act as catalysts and also increase the surface area. The polymer stabilizes the particles and provides the electrochemical separation of isomers. Under optimized conditions, the reduction peak currents, obtained by differential-pulse voltammetry, of 2-, 3-, and 4-nitrophenol increased linearly with increases in their concentration in the range of 0.1-1.5µmolL-1. In individual analysis, the detection limits were 33.7nmolL-1, 45.3nmolL-1 and 48.2nmolL-1, respectively. Also, simultaneous analysis was possible for 2-, and 4-nitrophenol. In this case, the separation of the peak potentials was 0.138V and the detection limits were 69.6nmolL-1 and 58.0nmolL-1, respectively. These analytical figures of merit evidence the outstanding performance of the modified electrode, which was also successfully applied to the individual determination of isomers in environmental and biological samples. The magnetite and platinum nanoparticles modified glassy carbon electrode was able to detect nitrophenol isomers at the ppm level in rain water and human urine samples.


Assuntos
Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/instrumentação , Nanopartículas de Magnetita/química , Nitrofenóis/urina , Platina/química , Adulto , Eletrodos , Humanos
4.
Sensors (Basel) ; 8(3): 1950-1959, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-27879804

RESUMO

The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 × 105 cm³ mol-1 s-1 at a concentration of 5.0 × 10-5 mol L-1. When a Nafion® film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 × 10-5 to 5.0 × 10-4 mol L-1 with a slope of 23.5 mA mol-1 L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 × 10-6 mol L-1 and the relative standard deviation for five measurements of 2.5 × 10-4 mol L-1 dopamine was 0.58%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA