Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 280: 126689, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153255

RESUMO

The conceptual expansion, fast development, and general acceptance of flow analysis are consequence of its adherence to the principles of green and white analytical chemistry, and chemical derivatization plays an essential role in this context. Through the flow analysis development, however, some of its potentialities and limitations have been overlooked. This is more evident when the involved modifications in flow rates, timing and/or manifold architecture deteriorate the analytical signals. These aspects have not always been systematically investigated, and are addressed here in relation to flow analyzers with UV-Vis spectrophotometric detection. Novel strategies for solution handling, guidance for dealing with the aforementioned analytical signal deterioration, and an alternative possibility for exploiting differential aspiration are presented. The concept of blank reagent carrier stream is proposed.

2.
J Proteome Res ; 23(6): 2041-2053, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38782401

RESUMO

Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.


Assuntos
Recifes de Corais , Metabolômica , Animais , Metabolômica/métodos , Metaboloma , Ilhas Virgens Americanas , Antozoários/metabolismo , Antozoários/química , Espectrometria de Massas/métodos , Ecossistema , Carbono/metabolismo , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA