Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Carbohydr Polym ; 329: 121739, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286536

RESUMO

Carbohydrate-active enzymes from the glycoside hydrolase family 9 (GH9) play a key role in processing lignocellulosic biomass. Although the structural features of some GH9 enzymes are known, the molecular mechanisms that drive their interactions with cellulosic substrates remain unclear. To investigate the molecular mechanisms that the two-domain Bacillus licheniformis BlCel9A enzyme utilizes to depolymerize cellulosic substrates, we used a combination of biochemical assays, X-ray crystallography, small-angle X-ray scattering, and molecular dynamics simulations. The results reveal that BlCel9A breaks down cellulosic substrates, releasing cellobiose and glucose as the major products, but is highly inefficient in cleaving oligosaccharides shorter than cellotetraose. In addition, fungal lytic polysaccharide oxygenase (LPMO) TtLPMO9H enhances depolymerization of crystalline cellulose by BlCel9A, while exhibiting minimal impact on amorphous cellulose. The crystal structures of BlCel9A in both apo form and bound to cellotriose and cellohexaose were elucidated, unveiling the interactions of BlCel9A with the ligands and their contribution to substrate binding and products release. MD simulation analysis reveals that BlCel9A exhibits higher interdomain flexibility under acidic conditions, and SAXS experiments indicate that the enzyme flexibility is induced by pH and/or temperature. Our findings provide new insights into BlCel9A substrate specificity and binding, and synergy with the LPMOs.


Assuntos
Celulose , Glicosídeo Hidrolases , Glicosídeo Hidrolases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Celulose/química , Carboidratos , Especificidade por Substrato
2.
Microorganisms ; 11(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110421

RESUMO

Cyanobacteria are rich sources of secondary metabolites and have the potential to be excellent industrial enzyme producers. ß-glucosidases are extensively employed in processing biomass degradation as they mediate the most crucial step of bioconversion of cellobiose (CBI), hence controlling the efficiency and global rate of biomass hydrolysis. However, the production and availability of these enzymes derived from cyanobacteria remains limited. In this study, we evaluated the ß-glucosidase from Microcystis aeruginosa CACIAM 03 (MaBgl3) and its potential for bioconversion of cellulosic biomass by analyzing primary/secondary structures, predicting physicochemical properties, homology modeling, molecular docking, and simulations of molecular dynamics (MD). The results showed that MaBgl3 derives from an N-terminal domain folded as a distorted ß-barrel, which contains the conserved His-Asp catalytic dyad often found in glycosylases of the GH3 family. The molecular docking results showed relevant interactions with Asp81, Ala271 and Arg444 residues that contribute to the binding process during MD simulation. Moreover, the MD simulation of the MaBgl3 was stable, shown by analyzing the root mean square deviation (RMSD) values and observing favorable binding free energy in both complexes. In addition, experimental data suggest that MaBgl3 could be a potential enzyme for cellobiose-hydrolyzing degradation.

3.
Bioresour Technol ; 323: 124559, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388211

RESUMO

Processes for the enzymatic hydrolysis of polysaccharides in biorefineries are becoming increasingly important. The complex network of reactions involved in polysaccharide hydrolysis can be described by stochastic models that advance in steps of time. Such models have the potential to be important tools for guiding process design and operation, and several have been developed over the last two decades. We evaluate these models. Many of the current stochastic models for the hydrolysis of colloidal polysaccharides use empirical parameters that have no recognized biological meaning. Only one model uses classical parameters of enzyme kinetics, namely specificity constants and saturation constants. Recent stochastic models for the hydrolysis of insoluble cellulose give valuable insights into the molecular-level phenomenon that limit hydrolysis rates. We conclude that, if stochastic models of enzymatic polysaccharide hydrolysis are to become widely used tools for guiding process development, then further improvements are required.


Assuntos
Celulase , Polissacarídeos , Celulase/metabolismo , Celulose , Hidrólise , Cinética
4.
Braz J Microbiol ; 51(2): 537-545, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31667801

RESUMO

A new strain of Trichoderma reesei (teleomorph Hypocrea jecorina) with high cellulase production was obtained by exposing the spores from T. reesei QM9414 to an ultraviolet light followed by selecting fast-growing colonies on plates containing CMC (1% w/v) as the carbon source. The mutant T. reesei RP698 reduced cultivation period to 5 days and increased tolerance to the end-products of enzymatic cellulose digestion. Under submerged fermentation conditions, FPase, CMCase, and Avicelase production increased up to 2-fold as compared to the original QM9414 strain. The highest levels of cellulase activity were obtained at 27 °C after 72 h with Avicel®, cellobiose, and sugarcane bagasse as carbon sources. The temperature and pH activity optima of the FPase, CMCase, and Avicelase were approximately 60 °C and 5.0, respectively. The cellulase activity was unaffected by the addition of 140 mM glucose in the enzyme assay. When T. reesei RP698 crude extract was supplemented by the addition of ß-glucosidase from Scytalidium thermophilum, a 2.3-fold increase in glucose release was observed, confirming the low inhibition by the end-product of cellulose hydrolysis. These features indicate the utility of this mutant strain in the production of enzymatic cocktails for biomass degradation.


Assuntos
Celulase/biossíntese , Fermentação , Hypocreales/enzimologia , Hypocreales/genética , Biomassa , Proteínas Fúngicas/biossíntese , Hidrólise , Hypocreales/efeitos da radiação , Mutação , Saccharum , Raios Ultravioleta
5.
Carbohydr Polym ; 211: 57-68, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824104

RESUMO

Plant biomass is a low-cost and abundant source of carbohydrates for production of fuels, "green" chemicals and materials. Currently, biochemical conversion of the biomass into sugars via enzymatic hydrolysis is the most viable technology. Here, the role of carbohydrate binding modules (CBMs) in the disruption of insoluble polysaccharide structures and their capacity to enhance cellulase-promoted lignocellulosic biomass hydrolysis was investigated. We show that CBM addition promotes generation of additional reducing ends in the insoluble substrate by cellulases. On the contrary, bovine serum albumin (BSA), widely used in prevention of a non-specific protein binding, causes an increase in soluble reducing-end production, when applied jointly with cellulases. We demonstrate that binding of CBMs to cellulose is non-homogeneous, irreversible and leads to its amorphisation. Our results also reveal effects of CBM-promoted amorphogenesis on cellulose hydrolysis by cellulases.


Assuntos
Carboidratos/química , Celulase/química , Celulose/química , Proteínas Fúngicas/química , Adsorção , Hidrólise , Ligação Proteica , Soroalbumina Bovina/química
6.
Waste Manag ; 79: 240-250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30343752

RESUMO

White-rot and brown-rot fungi have complementary mechanisms to selectively degrade lignin and holocellullose, respectively. Thereby, a fungal co-culture of a white-rot and a brown-rot fungal could result in efficient strategy for a mild lignocellulosic biomass pretreatment. In this work, single, sequential and co-inoculation of the selective-lignin degrading white-rot fungus Ganoderma lobatum and the brown-rot fungus Gloeophyllum trabeum were evaluated as biological pretreatments of wheat straw to enhance enzymatic hydrolysis of cellulose. The single cultures of G. lobatum and G. trabeum exhibited preferential degradation of lignin and hemicellulose, respectively. The total crystallinity index decreased in samples pretreated with G. trabeum but not with G. lobatum. The pretreatment with single cultures of G. lobatum or G. trabeum increased glucose yields by 43.6% and 26.1% respectively compared to untreated straw. Although co-inoculation resulted in higher yields of glucose when compared with single cultures, only a slight synergistic effect between fungi was observed. Contrary, the sequential inoculation of G. lobatum incubated for 10 days followed by G. trabeum incubated for 10 days more showed a strong synergic effect on enzymatic hydrolysis. This sequential culture showed the highest glucose yield (191.5 mg g-1 wheat straw), 2.8-fold higher than untreated wheat straw, and 140-150% higher than the single-cultures of G. lobatum and G. trabeum, respectively.


Assuntos
Basidiomycota , Triticum , Fungos , Hidrólise , Lignina
7.
Electron. j. biotechnol ; Electron. j. biotechnol;34: 29-36, july. 2018. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1045993

RESUMO

Background: Recombinant DNA technology enables us to produce proteins with desired properties and insubstantial amount for industrial applications. Endo-1, 4-ß-glucanases (Egl) is one of the major enzyme involved in degradation of cellulose, an important component of plant cell wall. The present study was aimed at enhancing the production of endo-1, 4-ß-glucanases (Egl) of Bacillus halodurans in Escherichia coli. Results: A putative Egl gene of Bacillus Halodurans was expressed in E. coli by cloning in pET 22b (+). On induction with isopropyl-b-D-1-thiogalactopyranoside, the enzyme expression reached upto ~20% of the cell protein producing 29.2 mg/liter culture. An increase in cell density to 12 in auto-inducing LB medium (absorbance at 600 nm) enhanced ß-glucanase production up to 5.4 fold. The molecular mass of the enzyme was determined to be 39 KDa, which is nearly the same as the calculated value. Protein sequence was analyzed by CDD, Pfam, I TASSER, COACH, PROCHECK Servers and putative amino acids involved in the formation of catalytic, substrate and metal binding domains were identified. Phylogenetic analysis of the ß-glucanases of B. halodurans was performed and position of Egl among other members of the genus Bacillus producing endo-glucanases was determined. Temperature and pH optima of the enzyme were found to be 60°C and 8.0, respectively, under the assay conditions. Conclusion: Production of endo-1, 4 ß-glucanase enzymes from B. halodurans increased several folds when cloned in pET vector and expressed in E. coli. To our knowledge, this is the first report of high-level expression and characterization of an endo-1, 4 ß-glucanases from B. halodurans.


Assuntos
Bacillus/enzimologia , Celulases/biossíntese , Temperatura , Estabilidade Enzimática , Expressão Gênica , Parede Celular/enzimologia , Reação em Cadeia da Polimerase , Clonagem Molecular , Celulases/isolamento & purificação , Celulases/metabolismo , Escherichia coli/metabolismo , Células Vegetais/enzimologia , Concentração de Íons de Hidrogênio , Hidrólise
8.
Int J Biol Macromol ; 117: 7-16, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800670

RESUMO

The hydrolysis of the plant biomass provides many interesting opportunities for the generation of building blocks for the green chemistry industrial applications. An important progress has been made for the hydrolysis of the cellulosic component of the biomass while, for the hemicellulosic components, the advances are less straightforward. Here, we describe the cloning, expression and biochemical and structural characterization of BlAbn1, a GH43 arabinanase from Bacillus licheniformis. This enzyme is selective for linear arabinan and efficiently hydrolyzes this substrate, with a specific activity of 127 U/mg. The enzyme has optimal conditions for activity at pH 8.0 and 45 °C and its activity is only partially dependent of a bound calcium ion since 70% of the maximal activity is preserved even when 1 mM EDTA is added to the reaction medium. BlAbn1 crystal structure revealed a typical GH43 fold and narrow active site, which explains the selectivity for linear substrates. Unexpectedly, the enzyme showed a synergic effect with the commercial cocktail Accellerase 1500 on cellulose hydrolysis. Scanning Electron Microscopy, Solid-State NMR and relaxometry data indicate that the enzyme weakens the interaction between cellulose fibers in filter paper, thus providing an increased access to the cellulases of the cocktail.


Assuntos
Bacillus licheniformis/enzimologia , Celulose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Bacillus licheniformis/genética , Sítios de Ligação , Domínio Catalítico , Celulases , Ativação Enzimática , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Electron. j. biotechnol ; Electron. j. biotechnol;31: 84-92, Jan. 2018. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1022139

RESUMO

Background: Cellulolytic enzymes of microbial origin have great industrial importance because of their wide application in various industrial sectors. Fungi are considered the most efficient producers of these enzymes. Bioprospecting survey to identify fungal sources of biomass-hydrolyzing enzymes from a high-diversity environment is an important approach to discover interesting strains for bioprocess uses. In this study, we evaluated the production of endoglucanase (CMCase) and ß-glucosidase, enzymes from the lignocellulolytic complex, produced by a native fungus. Penicillium sp. LMI01 was isolated from decaying plant material in the Amazon region, and its performance was compared with that of the standard isolate Trichoderma reesei QM9414 under submerged fermentation conditions. Results: The effectiveness of LMI01 was similar to that of QM9414 in volumetric enzyme activity (U/mL); however, the specific enzyme activity (U/mg) of the former was higher, corresponding to 24.170 U/mg of CMCase and 1.345 U/mg of ß-glucosidase. The enzymes produced by LMI01 had the following physicochemical properties: CMCase activity was optimal at pH 4.2 and the ß-glucosidase activity was optimal at pH 6.0. Both CMCase and ß-glucosidase had an optimum temperature at 60°C and were thermostable between 50 and 60°C. The electrophoretic profile of the proteins secreted by LMI01 indicated that this isolate produced at least two enzymes with CMCase activity, with approximate molecular masses of 50 and 35 kDa, and ß-glucosidases with molecular masses between 70 and 100 kDa. Conclusions: The effectiveness and characteristics of these enzymes indicate that LMI01 can be an alternative for the hydrolysis of lignocellulosic materials and should be tested in commercial formulations.


Assuntos
Penicillium/enzimologia , Celulase/biossíntese , beta-Glucosidase/biossíntese , Oligossacarídeos , Temperatura , Trichoderma/enzimologia , Estabilidade Enzimática , Celulase/metabolismo , beta-Glucosidase/metabolismo , Ecossistema Amazônico , Biocatálise , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/metabolismo
10.
Electron. j. biotechnol ; Electron. j. biotechnol;27: 70-79, May. 2017. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1010399

RESUMO

Background: Endoglucanase plays a major role in initiating cellulose hydrolysis. Various wild-type strains were searched to produce this enzyme, but mostly low extracellular enzyme activities were obtained. To improve extracellular enzyme production for potential industrial applications, the endoglucanase gene of Bacillus subtilis M015, isolated from Thai higher termite, was expressed in a periplasmic-leaky Escherichia coli. Then, the crude recombinant endoglucanase (EglS) along with a commercial cellulase (Cel) was used for hydrolyzing celluloses and microbial hydrolysis using whole bacterial cells. Results: E. coli Glu5 expressing endoglucanase at high levels was successfully constructed. It produced EglS (55 kDa) with extracellular activity of 18.56 U/mg total protein at optimal hydrolytic conditions (pH 4.8 and 50°C). EglS was highly stable (over 80% activity retained) at 40­50°C after 100 h. The addition of EglS significantly improved the initial sugar production rates of Cel on the hydrolysis of carboxymethyl cellulose (CMC), microcrystalline cellulose, and corncob about 5.2-, 1.7-, and 4.0-folds, respectively, compared to those with Cel alone. E. coli Glu5 could secrete EglS with high activity in the presence of glucose (1% w/v) and Tween 80 (5% w/v) with low glucose consumption. Microbial hydrolysis of CMC using E. coli Glu5 yielded 26 mg reducing sugar/g CMC at pH 7.0 and 37°C after 48 h. Conclusions: The recombinant endoglucanase activity improved by 17 times compared with that of the native strain and could greatly enhance the enzymatic hydrolysis of all studied celluloses when combined with a commercial cellulase.


Assuntos
Bacillus subtilis/enzimologia , Celulase/metabolismo , Isópteros/microbiologia , Tailândia , Proteínas Recombinantes/metabolismo , Celulase/genética , Celulose , Amplificação de Genes , Agricultura , Escherichia coli/metabolismo , Hidrólise
11.
AMB Express ; 6(1): 103, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807811

RESUMO

Biomass is abundant, renewable and useful for biofuel production as well as chemical priming for plastics and composites. Deconstruction of biomass by enzymes is perceived as recalcitrant while an inclusive breakdown mechanism remains to be discovered. Fungi such as Myceliophthora thermophila M77 appear to decompose natural biomass sources quite well. This work reports on this fungus fermentation property while producing cellulolytic enzymes using natural biomass substrates. Little hydrolytic activity was detected, insufficient to explain the large amount of biomass depleted in the process. Furthermore, this work makes a comprehensive account of extracellular proteins and describes how secretomes redirect their qualitative protein content based on the nature and chemistry of the nutritional source. Fungus grown on purified cellulose or on natural biomass produced secretomes constituted by: cellobiohydrolases, cellobiose dehydrogenase, ß-1,3 glucanase, ß-glucosidases, aldose epimerase, glyoxal oxidase, GH74 xyloglucanase, galactosidase, aldolactonase and polysaccharide monooxygenases. Fungus grown on a mixture of purified hemicellulose fractions (xylans, arabinans and arabinoxylans) produced many enzymes, some of which are listed here: xylosidase, mixed ß-1,3(4) glucanase, ß-1,3 glucanases, ß-glucosidases, ß-mannosidase, ß-glucosidases, galactosidase, chitinases, polysaccharide lyase, endo ß-1,6 galactanase and aldose epimerase. Secretomes produced on natural biomass displayed a comprehensive set of enzymes involved in hydrolysis and oxidation of cellulose, hemicellulose-pectin and lignin. The participation of oxidation reactions coupled to lignin decomposition in the breakdown of natural biomass may explain the discrepancy observed for cellulose decomposition in relation to natural biomass fermentation experiments.

12.
Biochem Biophys Rep ; 7: 52-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955888

RESUMO

The enzymatic hydrolysis of cellulose and lignocellulosic materials is marked by a rate decrease along the reaction time. Cellobiohydrolase slow dissociation from the substrate and its inhibition by the cellobiose produced are relevant factors associated to the rate decrease. In that sense, addition of ß-glucosidases to the enzyme cocktails employed in cellulose enzymatic hydrolysis not only produces glucose as final product but also reduces the cellobiohydrolase inhibition by cellobiose. The digestive ß-glucosidase GH1 from the fall armyworm Spodoptera frugiperda, hereafter called Sfßgly, containing the mutation L428V showed an increased kcat for cellobiose hydrolysis. In comparison to assays conducted with the wild-type Sfßgly and cellobiohydrolase TrCel7A, the presence of the mutant L428V increased in 5 fold the initial rate of crystalline cellulose hydrolysis and reduced to one quarter the time needed to TrCel7A produce the maximum glucose yield. As our results show that mutant L428V complement the action of TrCel7A, the introduction of the equivalent replacement in ß-glucosidases is a promising strategy to reduce costs in the enzymatic hydrolysis of lignocellulosic materials.

13.
Bioresour Technol ; 142: 570-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770535

RESUMO

This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield.


Assuntos
Ácidos/metabolismo , Reatores Biológicos , Lignina/metabolismo , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA