Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(3): 6068-6079, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35986114

RESUMO

The production of sustainable catalytic supports for palladium nanoparticles is always desired, even more so through the recovery of biomass residues. In this sense, two different solids were investigated - chitosan/cellulose film and corn stem biochar - as catalytic supports of palladium nanoparticles. The solids were carefully characterized and tested in the Suzuki-Miyaura reaction, a typical cross-coupling reaction. The developed catalytic systems proved to be efficient and sustainable, promoted the formation of target products very well, and demanded green reactants under environmentally appropriate conditions. With the results shown in the manuscript, it is expected to contribute to the valorization of biomass and agro-industrial residues in the development of new catalysts for the chemical industry.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Paládio/química , Quitosana/química , Zea mays , Celulose/química , Catálise
2.
Carbohydr Polym ; 230: 115621, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887869

RESUMO

In this study, we report the production of a free-standing film of non-modified cellulose impregnated with 12 wt.% of MnO2 nanoparticles with less than 100 nm in size. The method here described can be applied to the immobilization of different types of nanoparticles. The film was prepared by dissolving microcrystalline cellulose in an ionic liquid followed by its regeneration by adding water to the former solution. Then, the wet film was impregnated with the nanoparticles by dipping it in a MnO2 dispersion. Electron microscopy images revealed manganese dioxide nanoparticles distributed not only at the film surface but also in its interior. The cellulose film impregnated with MnO2 nanoparticles was capable of efficiently discolouring an Indigo Carmine dye solution in 25 min upon ambient light. The film was easily removed from the dye solution and repeatedly reused for at least 10 times without losing its discolouring efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA