Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Biotechnol ; 66(2): 354-364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37162721

RESUMO

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.


Assuntos
Compostos de Amônio , Vírus da Raiva , Raiva , Animais , Células Sf9 , Vírus da Raiva/genética , Glutamina , Baculoviridae/genética , Proteínas Recombinantes/genética , Meios de Cultura Livres de Soro , Ácido Glutâmico , Lactatos , Glucose , Spodoptera
2.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887330

RESUMO

Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer type and form part of a cancer cell's escape strategy after autophagy modulation, is emphasized. Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy pathways emerged and are reviewed critically here.


Assuntos
Glicólise , Neoplasias , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo
3.
Front Cell Dev Biol ; 11: 1061777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113766

RESUMO

Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.

4.
Mol Neurobiol ; 60(4): 1949-1963, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36595194

RESUMO

Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.


Assuntos
Astrócitos , Deficiências de Ferro , Humanos , Proteômica , Oligodendroglia/metabolismo , Metabolismo Energético , Metaboloma
5.
Artif Organs ; 47(8): 1395-1403, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36571478

RESUMO

BACKGROUND: Bioresorbable materials are compounds that decompose in physiological mediums both in vitro and in vivo and are used as an alternative to temporary implants in injured tissues. The aim of this study was to analyze the morphology and cytochemistry of cells grown on fibrous poly(ε-caprolactone) (PCL) scaffolds and to measure cell metabolism parameters by biochemical analysis of the conditioned culture medium from cells grown on the scaffolds. METHODS: Fibrous PCL scaffolds were used under the following conditions: unaligned fibers (NA), fibers aligned at 150 rpm (A150), and fibers aligned at 300 rpm (A300). Vero cells were cultured on these scaffolds for 24 h, 48 h, and 72 h. Samples were analyzed by SEM, MicroCT, cytochemistry, and culture medium biochemistry. RESULTS: The results of the cytochemical analysis showed cells were confluent and well spread on the culture plate, while cells grown on the polymeric scaffold, exhibited an elongated morphology. In the biochemical analyses, no significant differences were observed in the expression of alkaline phosphatase or in the levels of cholesterol or total protein in the culture medium. The different materials do not seem to promote changes in the expression or metabolism of these molecules. Only glucose was markedly reduced in the culture medium of cells grown on either aligned or unaligned scaffolds for 48 h or 72 h. This finding indicates the intense energy requirements of cells grown on these scaffolds. CONCLUSION: PCL fibers showed a great capacity to support cell growth. These data reinforce the interpretation that cells grow satisfactorily on PCL scaffolds.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Chlorocebus aethiops , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Células Vero , Poliésteres/química , Células Cultivadas
6.
Mol Biotechnol ; 65(6): 970-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36396754

RESUMO

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at different multiplicities of infection (MOI). Schott flasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and glutamate in a broad MOI (pfu/cell) range of BVG (0.15-12.5) and BVM (0.1-5.0) using SF900 III serum free culture medium. Death phase initiation and the specific death rate depend on BV MOI. The wave pattern of nutrient/metabolite profiles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5-4.5) and BVM (1.0-3.0) for maximum protein expression was defined. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifically, for progressing in a rabies VLP vaccine development.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Baculoviridae/genética , Baculoviridae/metabolismo , Células Sf9 , Linhagem Celular , Vírus da Raiva/genética , Glutamina/metabolismo , Glutamatos/metabolismo , Glucose/metabolismo
7.
Exp Biol Med (Maywood) ; 248(22): 2062-2071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38235691

RESUMO

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.


Assuntos
Cardiomiopatias , Cardiomiopatia Chagásica , Doença de Chagas , Doenças Mitocondriais , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Cardiomiopatias/etiologia , Miócitos Cardíacos/metabolismo , Inflamação , Arritmias Cardíacas , Doença Crônica
8.
Mol Biotechnol, v. 66, p. 354-364, abr. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4915

RESUMO

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to fnally obtain rabies VLP in two culture systems: Schott fask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specifc rates were quantifed over the exponential growth phase and infection stage. The highest uptake specifc rate was observed for glucose (42.5× 10–12 mmol cell/h) in SF and for glutamine (30.8× 10–12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10–10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The fndings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.

9.
Metabolites ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35888727

RESUMO

Studies enabled by metabolic models of different species of microalgae have become significant since they allow us to understand changes in their metabolism and physiological stages. The most used method to study cell metabolism is FBA, which commonly focuses on optimizing a single objective function. However, recent studies have brought attention to the exploration of simultaneous optimization of multiple objectives. Such strategies have found application in optimizing biomass and several other bioproducts of interest; they usually use approaches such as multi-level models or enumerations schemes. This work proposes an alternative in silico multiobjective model based on an evolutionary algorithm that offers a broader approximation of the Pareto frontier, allowing a better angle for decision making in metabolic engineering. The proposed strategy is validated on a reduced metabolic network of the microalgae Chlamydomonas reinhardtii while optimizing for the production of protein, carbohydrates, and CO2 uptake. The results from the conducted experimental design show a favorable difference in the number of solutions achieved compared to a classic tool solving FBA.

10.
Front Endocrinol (Lausanne) ; 13: 849279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574033

RESUMO

Gliomas are the most frequent solid tumors in children. Among these, high-grade gliomas are less common in children than in adults, though they are similar in their aggressive clinical behavior. In adults, glioblastoma is the most lethal tumor of the central nervous system. Insulin-like growth factor 1 receptor (IGF1R) plays an important role in cancer biology, and its nuclear localization has been described as an adverse prognostic factor in different tumors. Previously, we have demonstrated that, in pediatric gliomas, IGF1R nuclear localization is significantly associated with high-grade tumors, worst clinical outcome, and increased risk of death. Herein we explore the role of IGF1R intracellular localization by comparing two glioblastoma cell lines that differ only in their IGF1R capacity to translocate to the nucleus. In vitro, IGF1R nuclear localization enhances glioblastoma cell motility and metabolism without affecting their proliferation. In vivo, IGF1R has the capacity to translocate to the nucleus and allows not only a higher proliferation rate and the earlier development of tumors but also renders the cells sensitive to OSI906 therapy. With this work, we provide evidence supporting the implications of the presence of IGF1R in the nucleus of glioma cells and a potential therapeutic opportunity for patients harboring gliomas with IGF1R nuclear localization.


Assuntos
Glioblastoma , Glioma , Adulto , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Criança , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Receptores de Somatomedina/metabolismo
11.
Cell Mol Life Sci ; 79(5): 239, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416520

RESUMO

Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Sistema Nervoso Central/metabolismo , Humanos , Mamíferos , Mitocôndrias/metabolismo , Regeneração Nervosa , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal/fisiologia
12.
Mol Cell Biochem ; 477(8): 2033-2045, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35420333

RESUMO

The mesoionic compound 4-phenyl-5-(4-nitro-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride (MI-D) impairs mitochondrial oxidative phosphorylation and has a significant antitumour effect against hepatocarcinoma and melanoma. This study evaluated the cytotoxic effect of MI-D on T98G glioblastoma cells and investigated whether the impairment of oxidative phosphorylation promoted by MI-D is relevant to its cytotoxic effect. The effects of MI-D on T98G cells cultured in high glucose Dulbecco's modified Eagle's medium (DMEM) HG (glycolysis-dependent) and galactose plus glutamine-supplemented Dulbecco's modified Eagle's medium (DMEM) GAL (oxidative phosphorylation-dependent) were compared. T98G cells grown in DMEM GAL medium exhibited higher respiration rates and citrate synthase activity and lower lactate levels, confirming the metabolic shift to oxidative phosphorylation in these cells. MI-D significantly decreased the cell viability in a dose-dependent manner in both media; however, T98G cells cultured in DMEM GAL medium were more susceptible. The mesoionic significantly inhibited mitochondrial oxidative phosphorylation of glioma cells in both media. At the same time, lactate levels were not altered, indicating an absence of compensatory glycolysis activation. Additionally, MI-D increased the citrate synthase activity of cells in both media, which in DMEM HG-cultivated cells was followed by citrate accumulation. Apoptosis dependent on caspase-3 mediated the toxicity of MI-D on T98G cells. The higher susceptibility of glioma cells cultured in DMEM GAL medium to MI-D indicates that the impairment of mitochondrial functions is involved in mesoionic cytotoxicity. The results of this study indicate the potential use of MI-D for glioblastoma treatment.


Assuntos
Glioblastoma , Neoplasias Hepáticas , Apoptose , Citrato (si)-Sintase/farmacologia , Metabolismo Energético , Humanos , Lactatos/farmacologia
13.
Immunopharmacol Immunotoxicol ; 44(4): 457-470, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352607

RESUMO

In the immunopathogenesis of systemic lupus erythematosus (SLE), there is a dysregulation of specific immune cells, including T cells. The metabolic reprogramming in T cells causes different effects. Metabolic programs are critical checkpoints in immune responses and are involved in the etiology of autoimmune disease. For instance, resting lymphocytes generate energy through oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO), whereas activated lymphocytes rapidly shift to the glycolytic pathway. Specifically, mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid, and amino acid metabolism), and mTOR signaling are hallmarks of T lymphocyte metabolic dysfunction in SLE. Herein it is summarized how metabolic defects contribute to T cell responses in SLE, and some epigenetic alterations involved in the disease. Finally, it is shown how metabolic defects could be modified therapeutically.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Estresse Oxidativo , Transdução de Sinais
14.
Acta Physiol (Oxf) ; 234(3): e13782, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990078

RESUMO

The mechanisms underlying the immunometabolic disturbances during skeletal muscle atrophy caused by a plethora of circumstances ranging from hospitalization to spaceflight missions remain unknown. Here, we outline the possible pathways that might be dysregulated in such conditions and assess the potential of physical exercise to mitigate and promote the recovery of muscle morphology, metabolism and function after intervals of disuse. Studies applying exercise to attenuate disuse-induced muscle atrophy have shown a pivotal role of circulating myokines in the activation of anabolic signalling pathways. These muscle-derived factors induce accretion of contractile proteins in the myofibers, and at the same time decrease protein breakdown and loss. Regular exercise plays a crucial role in re-establishing adequate immunometabolism and increasing the migration and presence in the muscle of macrophages with an anti-inflammatory phenotype (M2) and T regulatory cells (Tregs) after disease-induced muscle loss. Additionally, the switch in metabolic pathways (glycolysis to oxidative phosphorylation [OXPHOS]) is important for achieving rapid metabolic homeostasis during muscle regeneration. In this review, we discuss the molecular aspects of the immunometabolic response elicited by exercise during skeletal muscle regeneration. There is not, nevertheless, consensus on a single optimal intensity of exercise required to improve muscle strength, mass and functional capacity owing to the wide range of exercise protocols studied so far. Despite the absence of agreement on the specific strategy, physical exercise appears as a powerful complementary strategy to attenuate the harmful effects of muscle disuse in different scenarios.


Assuntos
Músculo Esquelético , Voo Espacial , Exercício Físico , Humanos , Força Muscular , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
15.
Biomedicines ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672576

RESUMO

Pediatric high-grade glioma (pHGG) is one of the most aggressive brain tumors. Treatment includes surgery, radiotherapy, chemotherapy, or combination therapy in children older than 3−5 years of age. These devastating tumors are influenced by the hypoxic microenvironment that coordinatively increases the expression of carbonic anhydrases (CA9 and CA12) that are involved in pH regulation, metabolism, cell invasion, and resistance to therapy. The synthetic sulphonamide Indisulam is a potent inhibitor of CAs. The aim of this study was to evaluate the effects of Indisulam on CA9 and CA12 enzymes in pHGG cell lines. Our results indicated that, under hypoxia, the gene and protein expression of CA9 and CA12 are increased in pHGG cells. The functional effects of Indisulam on cell proliferation, clonogenic capacity, and apoptosis were measured in vitro. CA9 and CA12 gene and protein expression were analyzed by RT-PCR and western blot. The treatment with Indisulam significantly reduced cell proliferation (dose-time-dependent) and clonogenic capacity (p < 0.05) and potentiated the effect of apoptosis (p < 0.01). Indisulam promoted an imbalance in the anti-apoptotic BCL2 and pro-apoptotic BAX protein expression. Our results demonstrate that Indisulam contributes to apoptosis via imbalance of apoptotic proteins (BAX/BCL2) and suggests a potential to overcome chemotherapy resistance caused by the regulation these proteins.

16.
Mol Biotechnol, v. 65, 970–982, nov. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4717

RESUMO

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at diferent multiplicities of infection (MOI). Schott fasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and lutamate in a broad MOI (pfu/cell) range of BVG (0.15–12.5) and BVM (0.1–5.0) using SF900 III serum free culture medium. Death phase initiation and the specifc death rate depend on BV MOI. The wave pattern of nutrient/metabolite profles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5–4.5) and BVM (1.0–3.0) for maximum protein expression was defned. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifcally, for progressing in a rabies VLP vaccine development.

17.
Front Cell Infect Microbiol ; 11: 725043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595133

RESUMO

Host cell metabolism is essential for the viral replication cycle and, therefore, for productive infection. Energy (ATP) is required for the receptor-mediated attachment of viral particles to susceptible cells and for their entry into the cytoplasm. Host cells must synthesize an array of biomolecules and engage in intracellular trafficking processes to enable viruses to complete their replication cycle. The tricarboxylic acid (TCA) cycle has a key role in ATP production as well as in the synthesis of the biomolecules needed for viral replication. The final assembly and budding process of enveloped viruses, for instance, require lipids, and the TCA cycle provides the precursor (citrate) for fatty acid synthesis (FAS). Viral infections may induce host inflammation and TCA cycle metabolic intermediates participate in this process, notably citrate and succinate. On the other hand, viral infections may promote the synthesis of itaconate from TCA cis-aconitate. Itaconate harbors anti-inflammatory, anti-oxidant, and anti-microbial properties. Fumarate is another TCA cycle intermediate with immunoregulatory properties, and its derivatives such as dimethyl fumarate (DMF) are therapeutic candidates for the contention of virus-induced hyper-inflammation and oxidative stress. The TCA cycle is at the core of viral infection and replication as well as viral pathogenesis and anti-viral immunity. This review highlights the role of the TCA cycle in viral infections and explores recent advances in the fast-moving field of virometabolism.


Assuntos
Viroses , Vírus , Ciclo do Ácido Cítrico , Humanos , Inflamação , Replicação Viral
18.
J Biol Chem ; 297(2): 100950, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252456

RESUMO

Mammalian cells synthesize H2S from sulfur-containing amino acids and are also exposed to exogenous sources of this signaling molecule, notably from gut microbes. As an inhibitor of complex IV in the electron transport chain, H2S can have a profound impact on metabolism, suggesting the hypothesis that metabolic reprogramming is a primary mechanism by which H2S signals. In this study, we report that H2S increases lipogenesis in many cell types, using carbon derived from glutamine rather than from glucose. H2S-stimulated lipid synthesis is sensitive to the mitochondrial NAD(P)H pools and is enabled by reductive carboxylation of α-ketoglutarate. Lipidomics analysis revealed that H2S elicits time-dependent changes across several lipid classes, e.g., upregulating triglycerides while downregulating phosphatidylcholine. Direct analysis of triglyceride concentration revealed that H2S induces a net increase in the size of this lipid pool. These results provide a mechanistic framework for understanding the effects of H2S on increasing lipid droplets in adipocytes and population studies that have pointed to a positive correlation between cysteine (a substrate for H2S synthesis) and fat mass.


Assuntos
Glutamina , Sulfeto de Hidrogênio , NAD , Metabolismo Energético , Lipogênese , Mitocôndrias/metabolismo , Transdução de Sinais
19.
PeerJ ; 9: e11114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178433

RESUMO

BACKGROUND: Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure. METHODS: Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level. RESULTS: It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.

20.
Mol Neurobiol ; 58(9): 4520-4534, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34085182

RESUMO

Glioblastomas (GBMs), the most common and lethal primary brain tumor, show inherent infiltrative nature and high molecular heterogeneity that make complete surgical resection unfeasible and unresponsive to conventional adjuvant therapy. Due to their fast growth rate even under hypoxic and acidic conditions, GBM cells can conserve the intracellular pH at physiological range by overexpressing membrane-bound carbonic anhydrases (CAs). The synthetic sulfonamide E7070 is a potent inhibitor of CAs that harbors putative anticancer properties; however, this drug has still not been tested in GBMs. The present study aimed to evaluate the effects of E7070 on CA9 and CA12 enzymes in GBM cells as well as in the tumor cell growth, migration, invasion, and resistance to radiotherapy and chemotherapy. We found that E7070 treatment significantly reduced tumor cell growth and increased radio- and chemotherapy efficacy against GBM cells under hypoxia. Our data suggests that E7070 has therapeutic potential as a radio-chemo-sensitizing in drug-resistant GBMs, representing an attractive strategy to improve the adjuvant therapy. We showed that CA9 and CA12 represent potentially valuable therapeutic targets that should be further investigated as useful diagnostic and prognostic biomarkers for GBM tailored therapy.


Assuntos
Neoplasias Encefálicas/patologia , Inibidores da Anidrase Carbônica/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Inibidores da Anidrase Carbônica/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA