Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(8): e35450, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39082230

RESUMO

Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: "What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?" by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.


Assuntos
Adesão Celular , Titânio , Titânio/química , Humanos , Propriedades de Superfície , Implantes Dentários , Cristalografia , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia
2.
Clin Exp Metastasis ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581620

RESUMO

In several cancer types, metastasis is associated with poor prognosis, survival, and quality of life, representing a life risk more significant than the primary tumor itself. Metastasis is a multi-step process that spreads tumor cells from primary sites to surrounding or distant organs, originating secondary tumors. The interconnected steps that drive metastasis depend of several capabilities that enable cells to detach from the primary tumor, acquire motility and migrate through the basal membrane; invade and spread through the vascular system, and finally settle and originate a new tumor. Recently, stress-induced phosphoprotein 1 (STIP1) has emerged as a protein capable of driving tumor cells through these metastasis steps by mediating several biological processes and signaling pathways. This protein is mainly known for its function as a co-chaperone, acting as a scaffold for the interaction of its client heat-shock proteins Hsp70/90 chaperones; however, it is also known that STIP1 can act independently of chaperones to activate downstream phosphorylation pathways. The over-expression of STIP1 has been reported across various cancer types, identifying it as a potential biomarker for predicting patient prognosis and monitoring the progression of metastasis. Here, we present a discussion on how this co-chaperone mediates the initial steps of metastasis (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis), highlighting the biological mechanisms in which STIP1 plays a vital role, also presenting an overview of the current knowledge regarding its clinical relevance.

3.
J Oral Pathol Med ; 53(4): 246-257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503722

RESUMO

BACKGROUND: Cholesterol in cell membranes is crucial for cell signaling, adhesion, and migration. Membranes feature cholesterol-rich caveolae with caveolin proteins, playing roles in epithelial-mesenchymal transition and cancer progression. Despite elevated cholesterol levels in tumors, its precise function and the effects of its depletion in oral squamous cell carcinoma remain unclear. The aim of this study was to evaluate the influence of cholesterol depletion in oral squamous cell carcinoma cell line and epithelial-mesenchymal transition process. METHODS: Cholesterol depletion was induced on SCC-9 cells by methyl-ß-cyclodextrin and cell viability, proliferation, apoptosis, and colony formation capacities were evaluated. Gene and protein expressions were evaluated by reverse transcription polymerase chain reaction (RT-qPCR) and Western Blot, respectively, and cell sublocalization was assessed by immunofluorescence. RESULTS: Cholesterol depletion resulted in alteration of oral squamous cell carcinoma cell morphology at different concentrations of methyl-ß-cyclodextrin, as well as decreased cell proliferation and viability rates. Analysis of CAV1 transcript expression revealed increased gene expression in the treated SCC-9 during the 24 h period, at different concentrations of methyl-ß-cyclodextrin: 5 , 7.5, 10, and 15 mM, in relation to parental SCC-9. CAV1 protein expression was increased, with subsequent dose-dependent decrease. A statistically significant difference was observed in samples treated with 5 mM of methyl-ß-cyclodextrin (p = 0.02, Kruskal-Wallis test). The immunofluorescence assay showed lower cytoplasmic and membrane labeling intensity in the treated samples for CAV1. CONCLUSION: These findings indicate the modulation of cholesterol as a possible mechanism underlying the regulation of these molecules and activation of epithelial-mesenchymal transition in oral squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colesterol , Transição Epitelial-Mesenquimal/genética , Movimento Celular
4.
Oncol Lett ; 27(4): 176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464338

RESUMO

Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.

5.
Heliyon ; 10(3): e25038, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322837

RESUMO

Background: The goal of this in vitro study was to compare three different surfaces: two types of implant surfaces commercially available ([a] smooth/machined and [b] acid-treated surface) versus (c) anodized surface. Discs were manufactured with commercially pure titanium (CP) grade IV, which were subsequently analyzed by scanning microscopy and fibroblastic and osteoblastic cell cultures. Methods: Ninety-nine discs (5 × 2 mm) were manufactured in titanium grade IV and received different surface treatments: (i) Mach group: machined; (ii) AA group: double acid etch; and (iii) AN group: anodizing treatment. Three discs from each group were analyzed by Scanning Electron Microscopy (SEM) to obtain surface topography images and qualitatively analyzed by EDS. Balb/c 3T3 fibroblasts and pre-osteoblastic cells (MC3T3-E1 lineage) were used to investigate each group's biological response (n = 10/cellular type). The data were compared statistically using the ANOVA one-way test, considered as a statistically significant difference p < 0.05. Results: The AA group had numerous micropores with diameters between 5 and 10 µm, while nanopores between 1 and 5 nm were measured in the AN group. The EDX spectrum showed a high titanium concentration in all the analyzed samples. The contact angle and wetting tension were higher in the AA, whereas similar results were observed for the other groups. A lower result was observed for base width in the AA, which was higher in the other two groups. The AN showed the best values in the fibroblast cells, followed by Mach and AA; whereas, in the culture of the MC3T3 cells, the result was precisely the opposite (AA > Mach > AN). There was similar behavior for cell adhesion for the test groups (Mach and AN), with greater adhesion of Balb/c 3T3 fibroblasts compared to MC3T3 cells; in the AA group, there was greater adherence for MC3T3 cells compared to Balb/c 3T3 fibroblasts. Conclusions: The findings suggest that different surface characteristics can produce different biological responses, possibly cell-line dependent. These findings have important implications for the design of implantable medical devices, where the surface characteristics can significantly impact its biocompatibility.

6.
Braz J Microbiol ; 55(1): 663-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158467

RESUMO

This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.


Assuntos
Lactobacillales , Lactococcus lactis , Probióticos , Weissella , Humanos , Animais , Lactococcus lactis/genética , RNA Ribossômico 16S/genética , Células CACO-2 , Leite/microbiologia , Pepsina A , Desoxirribonucleases , Gelatinases
7.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069008

RESUMO

The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion.


Assuntos
Implantes Dentários , Humanos , Titânio/farmacologia , Titânio/química , Adesão Celular , Gengiva , Cimetidina , Osseointegração , Microscopia Eletrônica de Varredura , Propriedades de Superfície
8.
Eur J Protistol ; 91: 126026, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871554

RESUMO

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Humanos , Animais , Manose/metabolismo , Vanadatos , Adesão Celular/fisiologia , Sódio , Trofozoítos
9.
Antonie Van Leeuwenhoek ; 116(11): 1123-1137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650994

RESUMO

The use of yeasts as a feed supplement for cattle can promote animal development and performance. However, for the positive results to be consistent, strains with probiotic properties must be selected. The objective of this study was to isolate and identify yeasts present in the bovine feces and evaluate their probiotic potential together with strains previously isolated from the rumen (preliminary study). A total of 193 isolates were studied, including 139 isolates (19 species) from fecal samples from 11 different animals (Bos taurus and Bos indicus) and 54 strains previously isolated from rumen fluid (Bos taurus). The yeast population in the feces ranged from 3.51 to 4.99 log CFU/g, with Candida pararugosa being the most abundant (isolated from the feces of six samples analysed). Isolates were selected that had negative results in the safety tests (hemolytic activity, DNAse, and gelatinase) and had percentages greater than 35 and 70% for hydrophobicity and auto-aggregation, respectively. In addition, selected isolates had percentages greater than 77.7 and 74.7% for coaggregation with pathogenic strains of Escherichia coli and Clostridium perfringens, respectively. The isolates with percentage growth at 39 °C greater than 64.6% and viability greater than 96.7% were selected for survival testing under bovine gastrointestinal conditions. After the tests, the seven best isolates were selected, belonging to the species Candida pararugosa (L60, CCMA 928 and CCMA 930) and Pichia kudriavzevii (L97, L100, CCMA904, CCMA 907). The selected isolates were exopolysaccharide producers. Based on the results of the evaluated properties, the seven selected isolates were classified as potential probiotics for cattle.


Assuntos
Probióticos , Saccharomyces cerevisiae , Bovinos , Animais , Trato Gastrointestinal , Fezes , Escherichia coli
10.
Biomimetics (Basel) ; 8(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504211

RESUMO

Southern King Crab (SKC) represents an important fishery resource that has the potential to be a natural source of chitosan (CS) production. In tissue engineering, CS is very useful to generate biomaterials. However, CS has a lack of signaling molecules that facilitate cell-substrate interaction. Therefore, RGD (arginine-glycine-aspartic acid) peptides corresponding to the main integrin recognition site in extracellular matrix proteins have been used to improve the CS surface. The aim of this study was to evaluate in vitro cell adhesion and proliferation of CS films synthesized from SKC shell wastes functionalized with RGD peptides. The FTIR spectrum of CS isolated from SKC shells (SKC-CS) was comparable to commercial CS. Thermal properties of films showed similar endothermic peaks at 53.4 and 53.0 °C in commercial CS and SKC-CS, respectively. The purification and molecular masses of the synthesized RGD peptides were confirmed using HPLC and ESI-MS mass spectrometry, respectively. Mouse embryonic fibroblast cells showed higher adhesion on SKC-CS (1% w/v) film when it was functionalized with linear RGD peptides. In contrast, a cyclic RGD peptide showed similar adhesion to control peptide (RDG), but the highest cell proliferation was after 48 h of culture. This study shows that functionalization of SKC-CS films with linear or cyclic RGD peptides are useful to improve effects on cell adhesion or cell proliferation. Furthermore, our work contributes to knowledge of a new source of CS to synthesize constructs for tissue engineering applications.

11.
Cell Biochem Biophys ; 81(3): 533-542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470932

RESUMO

Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.


Assuntos
Mucopolissacaridose II , Humanos , Mucopolissacaridose II/complicações , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/diagnóstico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/uso terapêutico , Biomarcadores , Moléculas de Adesão de Célula Nervosa/uso terapêutico
12.
An Bras Dermatol ; 98(5): 580-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183149

RESUMO

BACKGROUND: Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare hereditary disorder characterized by defects in teeth, hair, and nails in association with a fusion of the digits. Genetically, the disease phenotypes are caused by homozygous and compound heterozygous variants in NECTIN4 gene. OBJECTIVE: The main objective of the study was to identify the pathogenic sequence variant(s) for family screening and identification of carriers. METHODS: In the present study, the authors have investigated a large consanguineous family of Pakistani origin segregating autosomal recessive EDSS1. All the coding exons of the NECTIN4 gene were directly sequenced using gene-specific primers. RESULTS: The affected individuals presented the classical EDSS1 clinical features including sparse hair, hypoplastic nails with thick flat discolored nail plates, peg-shaped, conical, and widely spaced teeth with enamel hypoplasia, proximal cutaneous syndactyly of fingers and toes. Sequence analysis of the coding region of the NECTIN4 identified a novel nonsense variant [c.163C>T; p.(Arg55*)] in exon-2 of the gene. Computational analysis of protein structure revealed that the variant induced premature termination at Arg55 located in Ig-like V-loop region leading to loss of Ig-C2 type domains and transmembrane region, and most likely Nectin-4 function will be lost. STUDY LIMITATION: Gene expression studies are absent that would have strengthened the findings of computational analysis. CONCLUSION: The present study expanded the phenotypic and mutation spectrum of the NECTIN4 gene. Further, the study would assist in carrier testing and prenatal diagnosis of the affected families.


Assuntos
Displasia Ectodérmica , Sindactilia , Humanos , Displasia Ectodérmica/genética , Códon sem Sentido/genética , Paquistão , Sindactilia/genética , Sindactilia/complicações , Mutação , Dedos , Moléculas de Adesão Celular/genética
13.
Endocr Connect ; 12(8)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166408

RESUMO

Context: Congenital hypopituitarism is a genetically heterogeneous condition. Whole exome sequencing (WES) is a promising approach for molecular diagnosis of patients with this condition. Objectives: The aim of this study is to conduct WES in a patient with congenital hypopituitarism born to consanguineous parents, CDH2 screening in a cohort of patients with congenital hypopituitarism, and functional testing of a novel CDH2 variant. Design: Genomic DNA from a proband and her consanguineous parents was analyzed by WES. Copy number variants were evaluated. The genetic variants were filtered for population frequency (ExAC, 1000 genomes, gnomAD, and ABraOM), in silico prediction of pathogenicity, and gene expression in the pituitary and/or hypothalamus. Genomic DNA from 145 patients was screened for CDH2 by Sanger sequencing. Results: One female patient with deficiencies in growth hormone, thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone and ectopic posterior pituitary gland contained a rare homozygous c.865G>A (p.Val289Ile) variant in CDH2. To determine whether the p.Val289Ile variant in CDH2 affects cell adhesion properties, we stably transfected L1 fibroblast lines, labeled the cells with lipophilic dyes, and quantified aggregation. Large aggregates formed in cells expressing wildtype CDH2, but aggregation was impaired in cells transfected with variant CDH2 or non-transfected. Conclusion: A homozygous CDH2 allelic variant was found in one hypopituitarism patient, and the variant impaired cell aggregation function in vitro. No disease-causing variants were found in 145 other patients screened for CDH2 variants. Thus, CDH2 is a candidate gene for hypopituitarism that needs to be tested in different populations. Significance statement: A female patient with hypopituitarism was born from consanguineous parents and had a homozygous, likely pathogenic, CDH2 variant that impairs cell aggregation in vitro. No other likely pathogenic variants in CDH2 were identified in 145 hypopituitarism patients.

14.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175864

RESUMO

Several studies have shown that diverse components of the bone marrow (BM) microenvironment play a central role in the progression, pathophysiology, and drug resistance in multiple myeloma (MM). In particular, the dynamic interaction between BM mesenchymal stem cells (BM-MSC) and MM cells has shown great relevance. Here we showed that inhibiting both PKC and NF-κB signalling pathways in BM-MSC reduced cell survival in the MM cell line H929 and increased its susceptibility to the proteasome inhibitor bortezomib. PKC-mediated cell survival inhibition and bortezomib susceptibility induction were better performed by the chimeric peptide HKPS than by the classical enzastaurin inhibitor, probably due to its greatest ability to inhibit cell adhesion and its increased capability to counteract the NF-κB-related signalling molecules increased by the co-cultivation of BM-MSC with H929 cells. Thus, inhibiting two coupled signalling molecules in BM-MSC was more effective in blocking the supportive cues emerging from the mesenchymal stroma. Considering that H929 cells were also directly susceptible to PKC and NF-κB inhibition, we showed that treatment of co-cultures with the HKPS peptide and BAY11-7082, followed by bortezomib, increased H929 cell death. Therefore, targeting simultaneously connected signalling elements of BM-MSC responsible for MM cells support with compounds that also have anti-MM activity can be an improved treatment strategy.


Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
15.
Rev Alerg Mex ; 69(3): 109-118, 2023 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-36869010

RESUMO

OBJECTIVE: To implement the diagnostic technique for LAD by evaluating the expression of CD18 and CD15 in healthy patients and in a group with clinical suspicion. METHODS: Observational, descriptive, and cross-secctional study, carried out in pediatric patients attended in the Instituto de Investigaciones en Ciencias de la Salud, and patients from public hospitals with clinical suspicion of LAD were studied. The molecules CD18 and CD15 in peripheral blood leukocytes was evaluated by flow cytometry, establishing a normal range in healthy patients. The presence of LAD was established by decreased expression of CD18 or CD15. RESULTS: Sixty pediatric patients were evaluated: 20 apparently healthy and 40 with clinical suspicion of leukocyte adhesion deficiency; 12 of 20 healthy patients were male (median age: 14 years) and 27 of 40 with suspected disease were female (median age: 2 years). Persistent leukocytosis and respiratory tract (32%) infections predominated. The expression range of CD18 and CD15 in healthy patients was 95%-100%, and in patients with clinical suspicion it was 0%-100%. One patient with 0% of CD18 (LAD-1) and one patient with 0% of CD15 (LAD-2) were detecte. CONCLUSIONS: The implementation of a new diagnostic technique allowed to establish a normal range of CD18 and CD15 by flow cytometry, and it was possible to detect the first two cases of LAD in Paraguay.


OBJECTIVO: Implementar la técnica diagnóstica para deficiencia de adhesión leucocitaria mediante la evaluación de la expresión de CD18 y CD15 en pacientes sanos y con sospecha clínica de la enfermedad. MÉTODOS: Estudio observacional, descriptivo y transversal, llevado a cabo en pacientes pediátricos sanos que acudieron al Instituto de Investigaciones en Ciencias de la Salud y pacientes de hospitales públicos con sospecha clínica de deficiencia de adhesión leucocitaria. Se evaluaron las moléculas CD18 y CD15 en leucocitos periféricos por citometría de flujo, con la intención de estadarizar un rango normal en pacientes sanos. Se estableció el diagnóstico de deficiencia de adhesión lecuocitaria, según la expresión disminuida de CD18 o CD15. RESULTADOS: Se evaluaron 60 pacientes pediátricos: 20 aparentemente sanos y 40 con sospecha clínica de deficiencia de adhesión leucocitaria; 12 de 20 pacientes sanos fueron varones (mediana de edad: 14 años) y 27 de 40 con sospecha de la enfermedad fueron mujeres (mediana de edad: 2 años). Predominaron la leucocitosis persistente y las infecciones respiratorias (32%). La expresión de CD18 y CD15 en pacientes sanos fue del 95-100% y en pacientes con sospecha de deficiencia de adhesión leucocitaria de 0-100%. Se identificó una paciente con 0% de expresión de CD18 (LAD-1) y otro con 0% de CD15 (LAD-2). CONCLUSIONES: La evaluación de las moléculas CD18 y CD15 permitió detectar los primeros casos de deficiencia de adhesión leucocitaria en Paraguay, que sirve de precedente y pone a punto la técnica para el diagnóstico de la enfermedad a nivel local.


Assuntos
Síndrome da Aderência Leucocítica Deficitária , Doenças da Imunodeficiência Primária , Humanos , Feminino , Masculino , Criança , Adolescente , Pré-Escolar , Paraguai , Leucócitos
16.
J Virol ; 97(2): e0182422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728417

RESUMO

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.


Assuntos
Mimiviridae , Proteínas do Capsídeo/genética , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/ultraestrutura , Filogenia
17.
Respir Med ; 209: 107155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796547

RESUMO

BACKGROUND: Hyperbaric oxygen therapy (HBOT) has been proposed to address COVID-19- associated respiratory failure. However, its biochemical effects are poorly known. METHOD: 50 patients with hypoxemic COVID-19 pneumonia were divided into C group (standard care) and H group (standard care plus HBOT). Blood was obtained at t = 0 and t = 5 days. Oxygen saturation (O2 Sat) was followed up. White blood cell (WC) count, lymphocytes (L) and platelets (P) and serum analysis (glucose, urea, creatinine, sodium, potassium, ferritin, D dimer, LDH and CRP) were carried out. Plasma levels of sVCAM, sICAM, sPselectin, SAA and MPO, and of cytokines (IL-1ß, IL-1RA, IL-6, TNFα, IFNα, IFNγ, IL-15, VEGF, MIP1α, IL-12p70, IL-2 and IP-10) were measured by multiplex assays. Angiotensin Converting Enzyme 2 (ACE-2) levels were determined by ELISA. RESULTS: The average basal O2 Sat was 85 ± 3%. The days needed to reach O2 Sat >90% were: H: 3 ± 1 and C: 5 ± 1 (P < 0,01). At term, H increased WC, L and P counts (all, H vs C: P < 0,01). Also, H diminished D dimer levels (H vs C, P < 0,001) and LDH concentration (H vs C, P < 0.01]. At term, H showed lower levels of sVCAM, sPselectin and SAA than C with respect to basal values (H vs C: ΔsVCAM: P < 0,01; ΔsPselectin: P < 0,05; ΔSAA: P < 0,01). Similarly, H showed diminished levels of TNFα (ΔTNFα: P < 0,05) and increased levels of IL-1RA and VEGF than C respect to basal values (H vs C: ΔIL-1RA and ΔVEGF: P < 0,05). CONCLUSION: Patients underwent HBOT improved O2 Sat with lower levels of severity markers (WC and platelets count, D dimer, LDH, SAA). Moreover, HBOT reduced proinflammatory agents (sVCAM, sPselectin, TNFα) and increased anti-inflammatory and pro-angiogenic ones (IL-1RA and VEGF).


Assuntos
COVID-19 , Oxigenoterapia Hiperbárica , Insuficiência Respiratória , Humanos , SARS-CoV-2 , COVID-19/complicações , COVID-19/terapia , Fator de Necrose Tumoral alfa , Proteína Antagonista do Receptor de Interleucina 1 , Fator A de Crescimento do Endotélio Vascular , Insuficiência Respiratória/terapia
18.
Clin Rheumatol ; 42(3): 731-739, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36192664

RESUMO

OBJECTIVES: To evaluate the relationship between soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intracellular adhesion molecule-1 (sICAM-1), and lipid levels in rheumatoid arthritis (RA) patients with and without carotid plaque (CP). METHODS: Cross-sectional study nested of a RA cohort. RA patients without a previous cardiovascular event or statins' therapy, aged 40-75 years were recruited at an outpatient cardio-rheumatology clinic. Carotid ultrasound was performed in all study subjects. RA patients with CP were included and matched to RA patients without CP by age, gender, and traditional cardiovascular risk factors. Blood samples were drawn at the time of recruitment to measure sVCAM-1, sICAM-1, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and lipid levels. Correlations between cell adhesion molecules, disease activity indexes, ESR and CRP with lipid levels were assessed with Spearman's correlation coefficient (rs). RESULTS: We included 71 RA patients, 37 with CP and 34 without CP. RA (n = 71) patients had a moderate negative correlation of sVCAM-1 with total cholesterol (TC) (rs = - 0.366, p = 0.002) and low-density lipoprotein (LDL) (rs = - 0.316, p = 0.007), and a small negative correlation with high-density lipoprotein (rs = - 0.250, p = 0.036). ESR showed a small negative correlation with LDL (rs = - 0.247, p = 0.038). Patients with CP had a moderate negative correlation between sVCAM and TC (rs = - 0.405, p = 0.013). Patients without CP showed a moderate negative correlation between sVCAM with TC (rs = - 0.364, p = 0.034) and LDL (rs = - 0.352, p = 0.041), and sICAM with VLDL (rs = - 0.343, p = 0.047). CONCLUSIONS: RA patients showed an inverse association of sVCAM-1 and lipid levels. More studies are needed to define the precise role of sVCAM-1 in the lipid paradox of RA.


Assuntos
Artrite Reumatoide , Humanos , Estudos Transversais , Artrite Reumatoide/tratamento farmacológico , Moléculas de Adesão Celular , Proteína C-Reativa/análise , Lipídeos , Molécula 1 de Adesão de Célula Vascular , Molécula 1 de Adesão Intercelular
19.
J Biomed Mater Res A ; 111(2): 234-244, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36239143

RESUMO

Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.

20.
Metab Brain Dis ; 38(2): 657-670, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409382

RESUMO

The aim was to investigate the association between plasma levels of cellular adhesion molecules (CAMs) and risk factors, subtypes, severity and short-term mortality of acute ischemic stroke (IS), and to identify a panel of biomarkers to predict short-term mortality after IS. The prospective study evaluated 132 IS patients within 24 h of their hospital admission. The baseline IS severity was assessed using the National Institutes Health Stroke Scale (NIHSS) and categorized as mild (NIHSS < 5), moderate (NIHSS 5-14) and severe (NIHSS ≥ 15). After three-month follow-up, the disability was assessed using the modified Rankin Scale (mRS); moreover, the patients were classified as survivors and non-survivors. Baseline inflammatory and anti-inflammatory cytokines and soluble CAMs were evaluated. Twenty-nine (21.9%) IS patients were non-survivors and showed higher NIHSS and soluble vascular cellular adhesion molecule 1 (sVCAM-1) than the survivors. The sVCAM-1 levels positively correlated with age, homocysteine, severity, and disability. The model #3 combining sVCAM-1 and NIHSS showed better results to predict short-term mortality with an area under the curve receiving operating characteristics (AUC/ROC) of 0.8841 [95% confidence interval (CI): 0.795-0.941] than the models with sVCAM-1 and NIHSS alone, with positive predictive value of 68.0%, negative predictive value of 91.3%, and accuracy of 86.5%. In conclusion, the combined model with baseline severity of IS and sVCAM-1 levels can early predict the prognosis of IS patients who may benefit with therapeutic measures of personalized therapy that taken into account these biomarkers. Moreover, this result suggests that VCAM-1 might be a potential target for the therapeutic strategies in IS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Molécula 1 de Adesão de Célula Vascular , AVC Isquêmico/complicações , Isquemia Encefálica/complicações , Estudos Prospectivos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA