Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409130

RESUMO

Thyroid hormone binds to specific nuclear receptors, regulating the expression of target genes, with major effects on cardiac function. Triiodothyronine (T3) increases the expression of key proteins related to calcium homeostasis, such as the sarcoplasmic reticulum calcium ATPase pump, but the detailed mechanism of gene regulation by T3 in cardiac voltage-gated calcium (Cav1.2) channels remains incompletely explored. Furthermore, the effects of T3 on Cav1.2 auxiliary subunits have not been investigated. We conducted quantitative reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence experiments in H9c2 cells derived from rat ventricular tissue, examining the effects of T3 on the expression of α1c, the principal subunit of Cav1.2 channels, and Cavß4, an auxiliary Cav1.2 subunit that regulates gene expression. The translocation of phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) by T3 was also examined. We found that T3 has opposite effects on these channel proteins, upregulating α1c and downregulating Cavß4, and that it increases the nuclear translocation of pCREB while decreasing the translocation of Cavß4. Finally, we found that overexpression of Cavß4 represses the mRNA expression of α1c, suggesting that T3 upregulates the expression of the α1c subunit in response to a decrease in Cavß4 subunit expression.


Assuntos
Canais de Cálcio Tipo L , Miócitos Cardíacos , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Linhagem Celular , Regulação para Cima/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
2.
Biophys Rev ; 9(5): 807-825, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836190

RESUMO

Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.

3.
Oncology ; 93(1): 1-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355609

RESUMO

Extensive research is currently underway, seeking better diagnostic methods and treatments and a better understanding of the molecular mechanisms involved in cancer, from the role of specific genetic mutations to the intricate biochemical and molecular pathways involved. Because of their role in regulating relevant physiological events such as cell proliferation, migration, and invasion, ion channels have recently been recognized as important elements in cancer initiation and progression. Moreover, it has been reported that pharmacological intervention in ion channel activity might provide protection against diverse types of cancer, and that ion channels could be used as targets to counteract tumor growth, prevent metastasis, and overcome the therapy resistance of tumor cells. In this context, Ca2+ channels have been found to play a role in tumorigenesis and tumor progression. Specifically, L-type Ca2+ channel inhibition may affect cell proliferation, differentiation, and apoptosis. This review aims to provide insights into the potential role of these channels in cancer cell lines, emphasizing their participation in cell proliferation, migration, and autophagy induction, as well as their potential as rational targets for new cancer therapeutics.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Movimento Celular , Proliferação de Células , Neoplasias/genética , Neoplasias/patologia , Autofagia , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA