Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Talanta ; 281: 126818, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39277935

RESUMO

This study introduces an innovative approach for quantifying isomeric pollutants utilizing an amperometric sensor. The determination of the isomers hydroquinone and catechol is based on the use of a glassy carbon electrode modified with Cu@PtPd/C nanoparticles (Cu@PtPd/C/GCE) in core-shell form, showing significant electrocatalytic activity in the oxidation of the later compounds. The determination was carried out at two different potentials: one at which where only hydroquinone is oxidized, and another in which where both hydroquinone and catechol are oxidized. Using these potentials, two calibration curves were built, one for the quantification of hydroquinone and the other for both isomers. Subsequently, the quantification of catechol was performed using a strategy based on the calculation of a difference using the information collected in the first step. The experiments using hydrogen peroxide as a redox probe demonstrate a clear synergistic effect in the catalytic reduction of hydrogen peroxide at -0.100 V, when Pt, Pd and Cu are incorporated into the core-shell nanostructure. The best performance was achieved with Cu@PtPd/C/GCE 1.00 mg mL-1. For the selected sensor, the analytical parameters are very competitive compared to similar devices reported in recent years for hydroquinone and catechol, with comparable linearity ranges of 0.010-0.200 mmol L-1 (hydroquinone) and 0.005-0.500 mmol L-1 (catechol), low limits of detection (LODs) of 14.0 nmol L-1 (S/N = 3.3) and 1.75 nmol L-1 (S/N = 3.3) for hydroquinone and catechol. The resulting sensor platform has been successfully applied for the quantification of hydroquinone and catechol in river and tap water and could be a promising candidate for environmental monitoring and drinking water safety.

2.
Chemosphere ; 335: 139155, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290511

RESUMO

The Fenton and Fenton-like reactions are based on the decomposition of hydrogen peroxide catalyzed by Fe(II), primarily producing highly oxidizing hydroxyl radicals (HO∙). While HO∙ is the main oxidizing species in these reactions, Fe(IV) (FeO2+) generation has been reported as one of the primary oxidants. FeO2+ has a longer lifetime than HO∙ and can remove two electrons from a substrate, making it a critical oxidant that may be more efficient than HO∙. It is widely accepted that the preferential generation of HO∙ or FeO2+ in the Fenton reaction depends on factors such as pH and Fe: H2O2 ratio. Reaction mechanisms have been proposed to generate FeO2+, which mainly depend on the radicals generated in the coordination sphere and the HO∙ radicals that diffuse out of the coordination sphere and react with Fe(III). As a result, some mechanisms are dependent on prior HO∙ radical production. Catechol-type ligands can induce and amplify the Fenton reaction by increasing the generation of oxidizing species. Previous studies have focused on the generation of HO∙ radicals in these systems, whereas this study investigates the generation of FeO2+ (using xylidine as a selective substrate). The findings revealed that FeO2+ production is increased compared to the classical Fenton reaction and that FeO2+ generation is mainly due to the reactivity of Fe(III) with HO∙ from outside the coordination sphere. It is proposed that the inhibition of FeO2+ generation via HO∙ generated from inside the coordination sphere is caused by the preferential reaction of HO∙ with semiquinone in the coordination sphere, favoring the formation of quinone and Fe(III) and inhibiting the generation of FeO2+ through this pathway.


Assuntos
Catecóis , Peróxido de Hidrogênio , Ferro , Catecóis/química , Peróxido de Hidrogênio/química , Ferro/química , Oxidantes/química , Oxirredução
3.
J Biotechnol ; 366: 19-24, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870480

RESUMO

Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.


Assuntos
Dioxigenases , Desidrogenase do Álcool de Açúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Dioxigenases/metabolismo , Oxirredução , Glicerol/metabolismo
4.
Environ Res ; 222: 115358, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702188

RESUMO

The subject of water contamination and how it gets defiled to the society and humans is confabulating from the past decades. Phenolic compounds widely exist in the water sources and it is emergent to determine the toxicity in natural and drinking water, because it is hazardous to the humans. Among these compounds, catechol has sought a strong concern because of its rapid occurrence in nature and its potential toxicity to humans. The present work aims to develop an effective electrochemical sensing of catechol using mesoporous structure of Fe3O4-TiO2 decorated on glassy carbon (GC) electrode. The creation of pure TiO2 using the sol-gel technique was the first step in the synthesis protocol for binary nanocomposite, which was then followed by the loading of Fe3O4 nanoparticles on the surface of TiO2 using the thermal decomposition method. The resultant Fe3O4-TiO2 based nanocomposite exhibited mesoporous structure and the cavities were occupied with highly active magnetite nanoparticles (Fe3O4) with high specific surface area (90.63 m2/g). When compared to pure TiO2, catechol showed a more prominent electrochemical response for Fe3O4-TiO2, with a significant increase in anodic peak current at a lower oxidation potential (0.387 V) with a detection limit of 45 µM. Therefore, the prepared magnetite binary nanocomposite can serve as an efficient electroactive material for sensing of catechol, which could also act as a promising electrocatalyst for various electrocatalytic applications.


Assuntos
Carbono , Nanopartículas de Magnetita , Humanos , Carbono/química , Nanopartículas de Magnetita/química , Catecóis , Água
5.
Environ Res ; 216(Pt 1): 114428, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179883

RESUMO

Creating mesoporous architecture on the surface of metal oxides without using pore creating agent is significant interest in electrochemical sensors because these materials act as an efficient electron transfer process between the electrode interface and the analytes. Recent advances in mesoporous titanium dioxide (TiO2)-based materials have acquired extraordinary opportunities because of their interconnected porous structure could act as a host for doping with various transition metals or heteroatoms to form a new type of heterojunction. Herein, a simple method is developed to synthesize mesoporous copper oxide (CuO) decorated on TiO2 nanostructures in which homogenous shaped CuO nanocrystals act as dopants decorated on the mesoporous structure of TiO2, resulting in p-n heterojunction nanocomposite. The TiO2 particles exhibit a mesoporous structure with a pore volume of about 0.117 cm3/g is capable to load CuO nanocrystals on the surface. As a result, large pore volume 0.304 cm³/g is obtained for CuO-TiO2 heterojunction nanocomposite with the loading of uniform-shaped CuO nanocrystals on the mesoporous TiO2. The resulting CuO-TiO2 nanocomposite on modified glassy carbon (GC) electrode exhibits good electrochemical performance for oxidation of catechol with the observation of strong enhancement in the anodic peak potential at +0.36 V. The decrease in the overpotential for the oxidation of catechol when compared to TiO2/GC is attributed to the presence of CuO nanocrystals providing a large surface area, resulting in wide linear range 10 nM to 0.57 µM. Moreover, the resultant modified electrode exhibited good sensitivity, selectivity and reproducibility and the sensor could able to determine the presence of catechol in real samples such as lake and river water. Therefore, the obtained CuO-TiO2 nanocomposite on the modified GC delivered good electrochemical sensing performance and which could be able to perform a promising strategy for designing various metal oxide doped nanocomposites for various photochemical and electrocatalytic applications.


Assuntos
Técnicas Eletroquímicas , Nanocompostos , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Cobre/química , Nanocompostos/química , Óxidos/química , Carbono/química , Catecóis , Água
6.
Neurotox Res ; 40(4): 973-994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708826

RESUMO

Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.


Assuntos
Astrócitos , Microglia , Animais , Astrócitos/metabolismo , Catecóis/toxicidade , Células Cultivadas , Interleucina-10/metabolismo , Microglia/metabolismo , Ratos , Ratos Wistar
7.
Front Chem ; 10: 1116887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704615

RESUMO

The synthesis and characterisation of new dyes based on indolizines bearing catechol groups in their structure is presented. The preparation was carried out through a simple three component one-pot reaction promoted by CuNPs/C, between pyridine-2-carbaldehyde, an aromatic alkyne and a tetrahydroisoquinoline (THIQ) functionalized with catechol groups. The products were isolated in 30%-34% yield, which was considered more than acceptable considering that the catechol hydroxyl groups were not protected prior to reaction. In view of the colour developed by the products and their response to the acidic and basic conditions of the medium, product 3aa was studied by UV-Vis and NMR spectroscopies at different pH values. We concluded that product 3aa suffered two deprotonations at pKa of 4.4 and 9.5, giving three species in a pH range between 2-12, with colours varying from light red to deep orange. The reversibility of the process observed for 3aa at different pH values, together with its changes in colour, make this new family of products attractive candidates to use them as pH indicators.

8.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562911

RESUMO

An electrochemical sensor based on electrochemically reduced graphene oxide (ErGO), carboxylated carbon nanotubes (cMWCNT), and gold nanoparticles (AuNPs) (GCE/ErGO-cMWCNT/AuNPs) was developed for the simultaneous detection of dihidroxybenzen isomers (DHB) hydroquinone (HQ), catechol (CC), and resorcinol (RS) using differential pulse voltammetry (DPV). The fabrication and optimization of the system were evaluated with Raman Spectroscopy, SEM, cyclic voltammetry, and DPV. Under optimized conditions, the GCE/ErGO-cMWCNT/AuNPs sensor exhibited a linear concentration range of 1.2-170 µM for HQ and CC, and 2.4-400 µM for RS with a detection limit of 0.39 µM, 0.54 µM, and 0.61 µM, respectively. When evaluated in tap water and skin-lightening cream, DHB multianalyte detection showed an average recovery rate of 107.11% and 102.56%, respectively. The performance was attributed to the synergistic effects of the 3D network formed by the strong π-π stacking interaction between ErGO and cMWCNT, combined with the active catalytic sites of AuNPs. Additionally, the cMWCNT provided improved electrocatalytic properties associated with the carboxyl groups that facilitate the adsorption of the DHB and the greater amount of active edge planes. The proposed GCE/ErGO-cMWCNT/AuNPs sensor showed a great potential for the simultaneous, precise, and easy-to-handle detection of DHB in complex samples with high sensitivity.


Assuntos
Derivados de Benzeno/análise , Monitoramento Ambiental , Grafite/química , Nanotubos de Carbono/química , Catálise , Catecóis , Técnicas Eletroquímicas , Eletrodos , Ouro , Hidroquinonas , Limite de Detecção , Nanopartículas Metálicas , Nanocompostos , Óxidos
9.
Front Pharmacol ; 12: 643874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935738

RESUMO

Background: To analyze the pain modulation capacity profile in a Brazilian population, the relationship between opioid receptor (OPRM1) and Catechol-O-methyltransferase (COMT) 1polymorphisms and pain modulation capacity was determined through preoperative pain modulation tests and acute postoperative pain control evaluation, swelling, and trismus in 200 volunteers undergoing lower third molar removal. Methods: Psychologic and clinical parameters were measured. Patient DNA was sequenced for single nucleotide polymorphisms in OPRM1 and COMT, and the salivary concentration of interleukin (IL)-2 (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α was evaluated. Primary outcomes were the influence of all predictors on the fluctuation of pain intensity using a visual analogue scale (VAS), and swelling and trismus on the 2nd and 7th postoperative days. Preoperative pain modulation capacity (CPM), pain catastrophizing scale (PCS), body mass index (BMI), and surgery duration and difficulty were evaluated. Results: Salivary concentration of IFN-γ and IL-2 as well as the duration of surgery influenced the fluctuation of postoperative pain in the VAS, and in the sum of the differences in pain intensity test at 8, 48, and 96 h. BMI influenced swelling, while both BMI and COMT haplotype influenced trismus on the 2nd postoperative day. Conclusion: Polymorphisms in COMT, salivary concentrations of IL-2 and IFN-γ, BMI, and duration of surgery were predictors for pain fluctuation, swelling, and trismus on the 2nd day after lower third molar extraction. This therapy was effective in controlling inflammatory symptomatology after lower third molar extraction and ibuprofen was well tolerated by patients. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03169127.

10.
Metab Brain Dis ; 36(6): 1223-1229, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33900525

RESUMO

There is an inconsistent finding about the relationship of catechol-O-methyltransferase (COMT) with dementia susceptibility, as well as with cognitive impairment. To substantiate this, we examined COMT genotype effects in certain cognitive domains in dementia. To evaluate the effects of COMT Val158Met on cognitive performance, we used The Mini-Mental State Examination (MMSE), the cognitive subscale of the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) and the Syndrome Kurz Test (SKT). The results show COMT Val/Met, Val/Val genotype polymorphisms had a significant effect on cognition performance (OR = 1.75 (95 %CI 1.22-2.54) and (OR = 2.76 (95 %CI 1.78-4.26), p < 0.001), and with adjustment for all cognitive test scores together, Val/Val (OR = 4.98 (95 % CI 1.47-16.86) and Val/Met (OR = 3.62 (95 % CI 1.37-9.56) had effect. Our study allows us to understand the role of COMT in cognitive performance in dementia, as well as interaction with other known risk factors for this pathology. This data might help in developing new therapeutic targets for cognitive impairment, main symptom of dementia. Other risk genotypes or haplotypes should be evaluated to determine the association with cognitive decline in dementia.


Assuntos
Catecol O-Metiltransferase/genética , Cognição/fisiologia , Disfunção Cognitiva/genética , Demência/genética , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/diagnóstico , Feminino , Genótipo , Humanos , Masculino , Americanos Mexicanos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fatores de Risco
11.
J Biomol Struct Dyn ; 39(16): 5872-5891, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691671

RESUMO

Parkinson's disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD consists of levodopa (L-dopa) administration, which is the precursor of DA. The inhibition of COMT is an adjuvant treatment in PD since it keeps DA levels constant. The goal of this study was to identify drug candidates capable of inhibiting COMT for the treatment of PD and identify important fragments of these molecules. Initially, we analyzed the flexibility of COMT and defined its main conformations in solution regarding the absence (system I) and presence of the S-adenosyl-L-methionine (SAM) cofactor (system II) through molecular dynamics (MD) simulations. Two regions in these structures were selected for molecular docking, firstly the entire cavity where the cofactor and substrates are bound and secondly the specific biding region of the enzyme substrates. Based on the conformations of the MD, the virtual screening (VS) was performed against FDA Approved and Zinc Natural Products databases aiming at the selection of the best compounds. Subsequently, the absorption, distribution, metabolization, excretion, and toxicity (ADMET) properties, as well as drug-score and drug-likeness indexes of the most promising compounds were analyzed. After a detailed analysis of the compounds selected by structure-based VS, it was possible to highlight the fragments most frequently involved in their stability: 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 9H-Benz(c)indole(3,2,1-ij)(1,5)naphthyridin-9-one and (10R,13S)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17dodecahydrocyclopenta[a]phenanthren-3-one. The identification of these potential fragments is essential for the prospection of more specific inhibitors against COMT using the technique of Fragment-based lead discovery (FBLD). Besides, this study allowed us to identify the potential COMT inhibitors through a complete understanding of molecular-level interactions based on the flexibility of this protein.Communicated by Ramaswamy H. Sarma.


Assuntos
Catecol O-Metiltransferase , Doença de Parkinson , Idoso , Inibidores de Catecol O-Metiltransferase , Inibidores Enzimáticos , Humanos , Levodopa , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Parkinson/tratamento farmacológico
12.
Polymers (Basel) ; 12(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213051

RESUMO

In the present work, the synthesis of segmented polyurethanes functionalized with catechol moieties within the hard or the soft segment is presented. For this purpose, a synthetic route of a new catechol diol was designed. The direct insertion of this catechol-free derivative into the rigid phase led to segmented polyurethanes with low performance (σmax ≈ 4.5 MPa). Nevertheless, when the derivative was formally located within the soft segment, the mechanical properties of the corresponding functionalized polyurethane improved considerably (σmax ≈ 16.3 MPa), owing to a significant increase in the degree of polymerization. It is proposed that this difference in reactivity could probably be attributed to a hampering effect of this catecholic ring during the polyaddition reaction. To corroborate this hypothesis, a protection of the aromatic ring was carried out, blocking the hampering effect and avoiding secondary reactions. The polyurethane bearing the protected catechol showed the highest molecular weight and the highest stress at break described to date (σmax ≈ 66.1 MPa) for these kind of catechol-functionalized polyurethanes. Therefore, this new approach allows for the obtention of high-performance polyurethane films and can be applied in different sectors, benefiting from the molecular adhesion introduced by the catechol ring.

13.
Front Microbiol ; 11: 1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582076

RESUMO

Catechol 1,2 dioxygenases (C12DOs) have been studied for its ability to cleavage the benzene ring of catechol, the main intermediate in the degradation of aromatic compounds derived from aerobic degradation of hydrocarbons. Here we report the genome sequence of the marine bacterium Pseudomonas stutzeri GOM2, isolated from the southwestern Gulf of Mexico, and the biochemical characterization of its C12DO (PsC12DO). The catA gene, encoding PsC12DO of 312 amino acid residues, was cloned and expressed in Escherichia coli. Many C12DOs have been described as dimeric enzymes including those present in Pseudomonas species. The purified PsC12DO enzyme was found as an active trimer, with a molecular mass of 107 kDa. Increasing NaCl concentration in the enzyme reaction gradually reduced activity; in high salt concentrations (0.7 M NaCl) quaternary structural analysis determined that the enzyme changes to a dimeric arrangement and causes a 51% decrease in specific activity on catechol substrate. In comparison with other C12DOs, our enzyme showed a broad range of action for PsC12DO in solutions with pH values ranging from neutral to alkaline (70%). The enzyme is still active after incubation at 50°C for 30 min and in low temperatures to long term storage after 6 weeks at 4°C (61%). EDTA or Ca2+ inhibitors cause no drastic changes on residual activity; nevertheless, the activity of the enzyme was affected by metal ions Fe3+, Zn2+ and was completely inhibited by Hg2+. Under optimal conditions the k cat and K m values were 16.13 s-1 and 13.2 µM, respectively. To our knowledge, this is the first report describing the characterization of a marine C12DOs from P. stutzeri isolated from the Gulf of Mexico that is active in a trimeric state. We consider that our enzyme has important features to be used in environments in presence of EDTA, metals and salinity conditions.

14.
World J Microbiol Biotechnol ; 35(12): 186, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728655

RESUMO

The pollution of aquatic environments by drugs is a problem for which scarce research has been conducted in regards of their removal. Amycolatopsis sp. Poz 14 presents the ability to biotransformation naphthalene at high efficiency, therefore, in this work this bacterium was proposed as an assimilator of naproxen and carbamazepine. Growth curves at different concentrations of naproxen and carbamazepine showed that Amycolatopsis sp. Poz 14 is able to utilize these drugs at a concentration of 50 mg L-1 as a source of carbon and energy. At higher concentrations, the bacterial growth was inhibited. The transformation kinetics of naproxen showed the total elimination of the compound in 18 days, but carbamazepine was only eliminated in 19.9%. The supplementation with cometabolites such as yeast extract and naphthalene (structure similar to naproxen) at 50 mg L-1, showed that the yeast extract shortened the naproxen elimination to 6 days and reached a higher global consumption rate compared to the naphthalene cometabolite. The biotransformation of carbamazepine was not improved by the addition of cometabolites. The partial sequencing of the genome of Amycolatopsis sp. Poz 14 detected genes encoding putative enzymes for the degradation of cyclic aromatic compounds and the activities of aromatic monooxygenase, catechol 1,2-dioxygenase and gentisate 1,2-dioxygenase exhibited their involving in the naproxen biodegradation. The HPLC-MS analysis detected the 5-methoxysalicylic acid at the end of the biotransformation kinetics. This work demonstrates that Amycolatopsis sp. Poz 14 utilizes naproxen and transforms it to 5-methoxysalicylic acid which is the initial compound for the catechol and gentisic acid metabolic pathway.


Assuntos
Actinomycetales/enzimologia , Actinomycetales/metabolismo , Redes e Vias Metabólicas , Naproxeno/metabolismo , Actinomycetales/efeitos dos fármacos , Actinomycetales/crescimento & desenvolvimento , Biodegradação Ambiental , Biotransformação , Carbamazepina/metabolismo , Carbamazepina/farmacologia , Carbono/metabolismo , Catecol 1,2-Dioxigenase , Catecóis , Dioxigenases , Poluição Ambiental , Gentisatos , Éteres de Hidroxibenzoatos/metabolismo , Cinética , Oxigenases de Função Mista , Naftalenos/metabolismo , Naproxeno/farmacologia , Salicilatos/metabolismo
15.
Acta neurol. colomb ; 35(supl.1): 11-18, set. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1019308

RESUMO

RESUMEN La enfermedad de Parkinson (EP) es principalmente una enfermedad de pacientes ancianos. Es un trastorno multifacético que comprende síntomas motores y no motores en todas las etapas de la enfermedad. Esta revisión busca integrar los datos de las opciones de tratamiento más recientes con los datos de las terapias establecidas, a fin de proporcionar una referencia actualizada basada en la evidencia para los médicos que tratan la EP temprana, con medicamentos que puedan usarse como alternativa a la levodopa. El enfoque de los médicos para el tratamiento de la enfermedad de Parkinson (EP) temprana debe tener en cuenta numerosos aspectos, entre ellos, cómo informar al paciente sobre el diagnóstico y la decisión crítica de qué terapia adoptar y cuándo iniciarla. El tratamiento del trastorno motor asociado con la EP temprana debe considerar varios factores cruciales, como la edad de inicio, las comorbilidades y los requisitos funcionales del paciente, y no se puede resumir en una fórmula simple. En pacientes más jóvenes (es decir, antes de la edad de 70 años) y en aquellos sin altos requisitos funcionales, el tratamiento generalmente se inicia con agonistas de dopamina y / o inhibidores de la enzima monoaminooxidasa-B (MAO- B I). En pacientes más jóvenes, la levodopa se debe agregar a los agonistas de la dopamina y / o MAO-B I, según lo requiera la progresión de la enfermedad, mientras que en los pacientes mayores, cuando la respuesta a la levodopa sola no es satisfactoria, los agonistas de la dopamina o los inhibidores de la catecol-O- metiltransferasa pueden posteriormente ser agregados.


SUMMARY Parkinson's disease (PD) is primarily a disease of elderly patients. Is a multifaceted disorder comprised of both motor and non-motor symptoms at all stages of the disease. This review seeks to integrate data from the newest treatment options with data from established therapies, so as to provide an up-to- date evidence-based reference for clinicians treating early PD, with medications that can be used as an alternative to levodopa. The clinicians' approach to the treatment of early Parkinson's disease (PD) should take into account numerous aspects, including how to inform a patient upon diagnosis and the critical decision of what therapy to adopt and when to start it. The treatment of the motor disorder associated with early PD needs to consider several crucial factors, such as age at onset, comorbidities, and the patient's functional requirements, and cannot be summarized in a simple formula. In younger patients (i.e., before the age of 70) and in those without high functional requirements, treatment is usually initiated with dopamine agonists and/or monoamine oxidase-B enzyme inhibitors (MAO-B I). In younger patients, levodopa should be added to dopamine agonists and/or MAO-B I, as required by disease progression, whereas in older patients, when response to levodopa alone is not satisfactory, dopamine agonists or catechol-O- methyltransferase inhibitors may subsequently be added.


Assuntos
Mobilidade Urbana
16.
Front Oncol ; 9: 541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293975

RESUMO

Caffeic acid (CA) is a phenolic compound synthesized by all plant species and is present in foods such as coffee, wine, tea, and popular medicines such as propolis. This phenolic acid and its derivatives have antioxidant, anti-inflammatory and anticarcinogenic activity. In vitro and in vivo studies have demonstrated the anticarcinogenic activity of this compound against an important type of cancer, hepatocarcinoma (HCC), considered to be of high incidence, highly aggressive and causing considerable mortality across the world. The anticancer properties of CA are associated with its antioxidant and pro-oxidant capacity, attributed to its chemical structure that has free phenolic hydroxyls, the number and position of OH in the catechol group and the double bond in the carbonic chain. Pharmacokinetic studies indicate that this compound is hydrolyzed by the microflora of colonies and metabolized mainly in the intestinal mucosa through phase II enzymes, submitted to conjugation and methylation processes, forming sulphated, glucuronic and/or methylated conjugates by the action of sulfotransferases, UDP-glucotransferases, and o-methyltransferases, respectively. The transmembrane flux of CA in intestinal cells occurs through active transport mediated by monocarboxylic acid carriers. CA can act by preventing the production of ROS (reactive oxygen species), inducing DNA oxidation of cancer cells, as well as reducing tumor cell angiogenesis, blocking STATS (transcription factor and signal translation 3) and suppression of MMP2 and MMP-9 (collagen IV metalloproteases). Thus, this review provides an overview of the chemical and pharmacological parameters of CA and its derivatives, demonstrating its mechanism of action and pharmacokinetic aspects, as well as a critical analysis of its action in the fight against hepatocarcinoma.

17.
Front Psychol ; 10: 1013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156495

RESUMO

Math anxiety (MA) is a phobic reaction to math activities, potentially impairing math achievement. Higher frequency of MA in females is explainable by the interaction between genetic and environmental factors. The molecular-genetic basis of MA has not been investigated. The COMT Val158Met polymorphism, which affects dopamine levels in the prefrontal cortex, has been associated with anxiety manifestations. The valine allele is associated with lower, and the methionine allele with higher, dopamine availability. In the present study, the effects of sex and COMT Val158Met genotypes on MA were investigated: 389 school children aged 7-12 years were assessed for intelligence, numerical estimation, arithmetic achievement and MA and genotyped for COMT Val158Met polymorphism. The Math Anxiety Questionnaire (MAQ) was used to assess the cognitive and affective components of MA. All genotype groups of boys and girls were comparable regarding genotype frequency, age, school grade, numerical estimation, and arithmetic abilities. We compared the results of all possible genetic models: codominance (Val/Val vs. Val/Met vs. Met/Met), heterosis (Val/Met vs. Val/Val plus Met/Met), valine dominance (Val/Val plus Val/Met vs. Met/Met), and methionine dominance (Met/Met plus Val/Met vs. Val/Val). Models were compared using AIC and AIC weights. No significant differences between girls and boys and no effects of the COMT Val158Met polymorphism on numerical estimation and arithmetic achievement were observed. Sex by genotype effects were significant for intelligence and MA. Intelligence scores were higher in Met/Met girls than in girls with at least one valine allele (valine dominance model). The best fitting model for MA was heterosis. In Anxiety Toward Mathematics, heterozygous individuals presented MA levels close to the grand average regardless of sex. Homozygous boys were significantly less and homozygous girls significantly more math anxious. Heterosis has been seldom explored, but in recent years has emerged as the best genetic model for some phenotypes associated with the COMT Val158Met polymorphism. This is the first study to investigate the genetic-molecular basis of MA.

18.
Percept Mot Skills ; 126(3): 349-365, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30841785

RESUMO

Within the cognitive domain, neuroscience and cognitive psychology researchers have investigated the relationship between handedness and cognitive skills. However, there have been few studies of the three-way association between manual asymmetry, its genetic components, and cognition even though this line of research could further an understanding of asymmetry. One enzyme involved in cognitive functions related to the dopaminergic system and to the prefrontal cortex is the catechol-O-methyltransferase (COMT), and it has a trimodal activity distribution in the human population due to its functional polymorphism known as Val158Met. This study investigated whether this COMT polymorphism is associated with asymmetries in the performance of a manual dexterity task. Forty-two right-handed undergraduate students ( Mage = 25.12, SD = 5.84; 15 women, 27 men) performed two trials each of place and remove conditions of the Grooved Pegboard Test with each hand (right and left), counterbalancing the order of the initial or starting hand. We calculated the mean time to perform the task for both hands on both trials and found, as hypothesized, that the Met/Met group gave a more asymmetrical performance than the Val/Met group under the place condition because dopamine levels reduced flexible behavior for the Val/Met group. We suspect that the place condition requires greater interhemispheric connectivity, as it requires a greater cognitive flexibility, and highly asymmetrical individuals are said to be less flexible. The findings of this study suggest a significant association between the COMT polymorphism and manual asymmetry in healthy populations.


Assuntos
Catecol O-Metiltransferase/genética , Lateralidade Funcional/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Lateralidade Funcional/genética , Humanos , Masculino , Adulto Jovem
19.
Braz. arch. biol. technol ; Braz. arch. biol. technol;62: e19180360, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055421

RESUMO

Abstract Catecholase (EC 1.10.3.1), an oxidoreductase enzyme is a key member of polyphenol oxidase family which catalyze the degradation of catechol. This enzyme possesses vast applications in diverse areas and is found in bacteria, fungi, mushrooms, higher plants, arthropods, amphibians and mammals. Catechol, a phenolic compound, is used as a starting material in the synthesis of various industrial compounds such as inhibitors, antioxidants, pesticides etc. The release of this phenolic compound in the environment causes toxicity to both flora and fauna. In the present studies, emphasis has been laid on isolation, screening and characterization of catechol degrading bacterium coupled with synthesis of catecholase enzyme. Further, the selected isolated strain was phenotypically characterized and was found to be member of genus Pseudomonas. Among all the isolates, BSC-6 was found as best isolate with maximum extracellular catecholase activity of 152.32 IU/L obtained after scale up studies. The herein synthesized bacterial catecholase may be employed for wide applications particularly in bioremediation of phenol enriched polluted sites.


Assuntos
Oxirredutases , Catecóis , Polifenóis , Pseudomonas , Biodegradação Ambiental
20.
Anal Bioanal Chem ; 410(30): 7909-7919, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306236

RESUMO

A method combining liquid chromatography with a dual-probe ultraspray electrospray ionization (ESI) source and time-of-flight high-resolution mass spectrometry (LC-ESI-TOF/MS) was developed for the simultaneous determination of four steroidal sex hormones, estrone (E1), 17ß-estradiol (E2), 17α-ethinyl estradiol (EE2), and estriol (E3), as well as five of their hydroxylated metabolites, 2-hydroxyestrone (2-OHE1), 4-hydroxyestrone (4-OHE1), 16α-hydroxyestrone (16-OHE1), 2-hydroxyestradiol (2-OHE2), and 4-hydroxyestradiol (4-OHE2), in water samples in a short chromatographic run of 10 min. Derivatization of the analytes was optimized using dansyl chloride as the derivatizing agent. Under optimal positive ionization conditions, the following signals, which had not been previously reported, were observed (with theoretical values of m/z 377.1373 for 2- and 4-OHE1 and 378.1452 for 2- and 4-OHE2), corresponding to doubly derivatized catechol estrogens in the form of [M+2H]2+. These mass spectrometric signals were more abundant than those reported previously for the [M+H]+ forms of these hydroxylated metabolites. Solid-phase extraction (SPE) with an octadecyl-endcapped sorbent was used to pretreat tap water and effluent from a wastewater treatment plant (WWTP) in Santiago, Chile. The method achieved the simple, fast, and sensitive measurement of nine estrogens with quantitative recoveries (higher than 85.4%). Detection and quantification limits were between 1 and 17 ng L-1 and between 3 and 58 ng L-1, respectively, for all compounds in water. The estrogens E1 and E2 were found in WWTP effluent at concentrations of 7 ± 1 and 41 ± 1 ng L-1, respectively, and EE2 was detected at a concentration below the limit of quantitation. This study shows that the proposed method is suitable for the accurate, rapid, and selective determination of all these analytes at trace levels. Graphical abstract ᅟ.


Assuntos
Compostos de Dansil/química , Estrogênios/análise , Estrogênios/classificação , Águas Residuárias/análise , Água/análise , Chile , Cromatografia Líquida/métodos , Hidroxilação , Limite de Detecção , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA