Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sci Rep ; 14(1): 6679, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509122

RESUMO

The use of castor oil in producing polyurethane resins has been identified as one of the most promising options for the industry. The piassava fibers waste generated by the industry on a large scale presents excellent properties as a reinforcing agent due to its high lignin content characterized by chemical tests and FTIR. Composite boards consisting of a higher content of mercerized piassava fibers (10 mm, 85 wt.%) reinforced polyurethane castor oil-based resin (prepolymer (PP) and polyol (OM)) exhibited excellent performance. Composites with these properties have strong potential for medium-density applications ranging from biomedical prosthetics to civil partition walls and insulation linings. Alkali treatment removed the superficial impurities of piassava fibers, activating polar groups, and physical characterization reported excellent performance for all composites. Among the composites, the CP3 sample (composite reinforced with piassava fibers (85 wt.% fibers; 1.2:1-PP:OM)) stood out with higher density and lower swelling and water absorption percentage than other composites. FTIR results indicated NCO traces after the resin cured in the PU3 (1.2:1-PP:OM), possibly contributing to the interaction with the fibers. DMA results reported relevant information about more flexibility to CP1 (composite reinforced with piassava fibers (85 wt.% fibers; 0.8:1-PP:OM)) and CP3 than CP2 (composite reinforced with piassava fibers (85 wt.% fibers; 1:1-PP:OM)). The results suggest that the proper combination with natural products must lead to composites with potential applications as engineering materials.

2.
Biodegradation ; 35(3): 315-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37987936

RESUMO

In this article, the degradability by Aspergillus niger and Aspergillus clavatus of three bio-based polyurethane (PU) foams is compared to previous degradability studies involving a Pseudomonas sp. bacterium and similar initial materials (Spontón et al. in Int. Biodet. Biodeg. 85:85-94, 2013, https://doi.org/10.1016/j.ibiod.2013.05.019 ). First, three new polyester-polyurethane foams were prepared from mixtures of castor oil (CO), maleated castor oil (MACO), toluene diisocyanate (TDI), and water. Then, their degradation tests were carried out in an aqueous medium, and employing the two mentioned fungi, after their isolation from the environment. From the degradation tests, the following was observed: (a) the insoluble (and slightly collapsed) foams exhibited free hydroxyl, carboxyl, and amine moieties; and (b) the water soluble (and low molar mass) compounds contained amines, carboxylic acids, and glycerol. The most degraded foam contained the highest amount of MACO, and therefore the highest concentration of hydrolytic bonds. A basic biodegradation mechanism was proposed that involves hydrolysis and oxidation reactions.


Assuntos
Aspergillus , Poliésteres , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Poliésteres/metabolismo , Aspergillus niger/metabolismo , Óleo de Rícino/química , Água
3.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765587

RESUMO

The increased demand for vascular grafts for the treatment of cardiovascular diseases has led to the search for novel biomaterials that can achieve the properties of the tissue. According to this, the investigation of polyurethanes has been a promising approach to overcome the present limitations. However, some biological properties remain to be overcome, such as thrombogenicity and hemocompatibility, among others. This paper aims to synthesize polyurethanes based on castor oil and castor oil transesterified with triethanolamine (TEA) and pentaerythritol (PE) and with the incorporation of 1% chitosan. Analysis of the wettability, enzymatic degradation, mechanical properties (tensile strength and elongation at break), and thermal stability was performed. Along with the evaluation of the cytotoxicity against mouse fibroblast (L929) and human dermal fibroblast (HDFa) cells, the hemolysis rate and platelet adhesion were determined. The castor-oil-based polyurethanes with and without 1% chitosan posed hydrophobic surfaces and water absorptions of less than 2% and enzymatic degradation below 0.5%. Also, they were thermally stable until 300 °C, with tensile strength like cardiovascular tissues. The synthesized castor oil/chitosan polyurethanes are non-cytotoxic (cell viabilities above 80%) to L929 and HDFa cells and non-thrombogenic and non-hemolytic (less than 2%); therefore, they are suitable for cardiovascular applications.

4.
Polymers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299276

RESUMO

Epoxidation of castor oil in synthetic and enzymatic routes was carried out in order to promote a system with less environmental impact. The epoxidation reactions of castor oil compounds upon addition of lipase enzyme with and without acrylic immobilization and with reaction times of 24 and 6 h, as well as the synthetic compounds upon addition of Amberlite resin and formic acid, were investigated using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance in hydrogen molecules (1H-NMR). The analysis indicated that the enzymatic reactions (6 h) and synthetic reactions provided a conversion from 50 to 96% and epoxidation from 25 to 48%, resulting from peak stretching and signal disintegration in the hydroxyl region due to the appearance of H2O in the interaction of peracid with catalyst. In systems without toluene, a dehydration event with a peak absorbance of 0.02 AU, indicating a possible vinyl group at 2355 cm-1 in enzymatic reactions without acrylic immobilization, was observed and resulted in a selectivity of 2%. In the absence of a solid catalyst, an unsaturation conversion of castor oil above 90% was achieved; however, this catalyst is necessary for the epoxidation to take place, whereas the lipase enzyme becomes able of epoxidizing and dehydrating the castor oil upon changing the time or reaction system. The conversation from 28 to 48% of solid catalysts (Amberlite and lipase enzyme) displays their importance to the instauration conversion of castor oil into oxirane rings.

5.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110058

RESUMO

Flexible films of a conductive polymer nanocomposite-based castor oil polyurethane (PUR), filled with different concentrations of carbon black (CB) nanoparticles or multiwall carbon nanotubes (MWCNTs), were obtained by a casting method. The piezoresistive, electrical, and dielectric properties of the PUR/MWCNT and PUR/CB composites were compared. The dc electrical conductivity of both PUR/MWCNT and PUR/CB nanocomposites exhibited strong dependences on the concentration of conducting nanofillers. Their percolation thresholds were 1.56 and 1.5 mass%, respectively. Above the threshold percolation level, the electrical conductivity value increased from 1.65 × 10-12 for the matrix PUR to 2.3 × 10-3 and 1.24 × 10-5 S/m for PUR/MWCNT and PUR/CB samples, respectively. Due to the better CB dispersion in the PUR matrix, the PUR/CB nanocomposite exhibited a lower percolation threshold value, corroborated by scanning electron microscopy images. The real part of the alternating conductivity of the nanocomposites was in accordance with Jonscher's law, indicating that conduction occurred by hopping between states in the conducting nanofillers. The piezoresistive properties were investigated under tensile cycles. The nanocomposites exhibited piezoresistive responses and, thus, could be used as piezoresistive sensors.

6.
Front Pediatr ; 11: 877550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950175

RESUMO

During a 2-year period, eight cases of a distinct illness were seen among 1,424 neonates admitted to a newly established neonatal care unit in southern Haiti. The newborns presented with a picture of sepsis with shock, vomiting, hypotonia, lethargy, and abdominal distention. Five cases proved fatal and another case left the hospital against advice in extremis with little chance of survival. In each case, the illness was associated with a history of ingestion of teas that included castor oil, known as lok in Haitian Creole. The presumptive cause of the illness was established by the presence of a dark, oily substance in drainage from the nares and nasogastric tubes and by subsequent admission on direct questioning of the caregivers, who said that the infants had been given large amounts of lok. The castor oil tea had been given to three infants in the immediate neonatal period where its use is attributed to encouraging the passage of meconium. The five remaining infants were between 15 and 30 days of life when they were given lok shortly before admission to the neonatal unit for treatment of an undefined illness. All of them were term infants with no identified risks at birth. As nasogastric tubes are not routinely placed in sick neonates, and the parents did not volunteer information about lok administration, the practice may be more widespread than that recorded here. Although our data are confined to observations in Haiti, the use of traditional medicines is a globally widespread phenomenon. Attention must be drawn to the potential toxicity of such preparations and means found to ban their use in neonates.

7.
Biotechnol Appl Biochem ; 70(2): 919-929, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36239385

RESUMO

In this work, ultrasound was used to assist the ethanolysis of castor oil in a solvent-free system, catalyzed by a dry fermented solid containing the lipase from Burkholderia contaminans (BCFS). Reactions were done at 45°C. The maximum conversion in Erlenmeyer flasks was 71% in 96 h, using a loading of 9% (mass of BCFS in relation to the mass of triacylglycerols in the castor oil) and a molar ratio of ethanol:oil of 6:1, with addition of ethanol in 12 steps. In a packed-bed reactor containing 12 g of BCFS, the conversions were 78% in 48 h, and 83% in 72 h with an ethanol to oil molar ratio of 3:1 and treatment with an ultrasound probe, with maximum power of 500 W, frequency of 20 kHz, and 75% of the maximum power. These results are promising given that, with an ultrasound assisted bioreactor, a higher conversion in a shorter time was achieved, with a lower ethanol to oil molar ratio than was the case in the Erlenmeyer flasks without ultrasound.


Assuntos
Óleo de Rícino , Etanol , Esterificação , Reatores Biológicos , Catálise , Biocombustíveis , Óleos de Plantas , Enzimas Imobilizadas
8.
Polymers (Basel) ; 14(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559899

RESUMO

The main objective of this work was to produce and characterize a novel ecofriendly castor oil-based polyurethane (COPU) matrix composite reinforced by Luffa cylindrica mats, luffa for short, to be used as panels, as an alternative to oriented strand board (OSB). To do so, the mechanical behavior was evaluated by tree point flexural, perpendicular o surface tensile, screw pullout, and impact tests that were carried on the novel composite along with the neat matrix. Furthermore, the physical characteristics, the thermomechanical behavior, and the functional groups of the materials were observed by water absorption and thickness swelling tests along with dilatometry and Fourier transform infrared spectroscopy (FTIR). A comparison with commercialized OSB was also performed for control. The luffa/COPU composite was prepared by hand lay-up with 48 vol% of luffa mats incorporated as the maximum allowed by the mold under the available resources for manufacturing. The luffa fibers acted as a good reinforcement for the COPU matrix, where the flexural strength and modulus of elasticity were increased by more than 23 and 10 times, respectively, and the other mechanical properties more than doubled for the composites compared to the neat COPU resin. In general, the composite presented a lower performance compared to the commercial OSB, with the impact results being the exception. The water absorption and thickness swallowing results showed an already-expected behavior for the studied materials, where the better performance was found for the hydrophobic neat resin. The FTIR revealed that there was little interaction between luffa and COPU resin, which can be translated to a weak interface between these materials. However, the mechanical behavior, together with the other results presented by the luffa/COPU composite, confirm it is more than enough to be used as civil construction panels such as OSB.

9.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501544

RESUMO

This study evaluates the hybridization effect of S2-glass/aramid on polyurethane (PU) composites produced by vacuum infusion. Different laminates were produced with similar thickness (around 2.5 mm), using, as reinforcement, only aramid fabrics (five layers, named as K5) or only S2-glass fabrics (eight layers, named as G8). Furthermore, hybridization was obtained by manufacturing symmetrical hybrid inter-ply laminates, with four S2-glass layers and two of aramid, (G2K)S and (KG2)S. The mechanical response of the laminates was evaluated in tensile, interlaminar shear strength, dynamical mechanical analysis and quasi-static indentation tests, and related to their morphological characteristics. The main results show that the pure glass composites presented less voids, but a higher density as well as higher tensile stiffness and strength. The aramid laminates showed a high capability for absorbing impact energy (ca. 30% higher than the pure glass laminates), and the hybrid laminates had intermediate properties. More importantly, this work shows the possibility of using a polyurethane matrix for vacuum infusion processing, effective even for aramid/S2-glass hybrid composites with thermoset polyurethane resin. This study is therefore promising for impact absorption in applications such as protective armor. The studied hybrid laminate may display a suitable set of properties and greater energy absorption capability and penetration resistance for impact applications.

10.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297881

RESUMO

Waterborne polyurethanes (WBPUs) with relatively high biobased content (up to 43.7%) were synthesized, aiming at their use as coatings for metals and woods. The study was performed on self-standing films obtained from anionic polyurethane water dispersions (PUDs). The initially targeted PUD was prepared from castor oil (CO), while tartaric acid (TA), a byproduct of wine production, was utilized as the internal anionic emulsifier. Although the films were cohesive and transparent, they were fragile, and thus blending the CO-TA PUD with other WBPUs was the chosen strategy to obtain films with improved handling characteristics. Two different WBPUs based on polycaprolactone diol (PCL), a biodegradable macrodiol, were prepared with dimethylolpropionic acid (DMPA) and tartaric acid (TA) as synthetic and biobased internal emulsifiers, respectively. The use of blends with PCL-TA and PCL-DMPA allowed for tailoring the moduli of the samples and also varying their transparency and haze. The characterization of the neat and hybrid films was performed by colorimetry, FTIR-ATR, XRD, DMA, TGA, solubility and swelling in toluene, and water contact angle. In general, the addition of PCL-based films increases haze; reduces the storage modulus, G', which at room temperature can vary in the range of 100 to 350 MPa; and reduces thermal degradation at high temperatures. The results are related to the high gel content of the CO-TA film (93.5 wt.%), which contributes to the cohesion of the blend films and to the crystallization of the PCL segments in the samples. The highest crystallinity values corresponded to the neat PCL-based films (32.3% and 26.9%, for PCL-DMPA and PCL-TA, respectively). The strategy of mixing dispersions is simpler than preparing a new synthesis for each new requirement and opens possibilities for new alternatives in the future.

11.
Neurogastroenterol Motil ; 34(2): e14277, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662472

RESUMO

BACKGROUND: This study investigated the antidiarrheal potential of the aqueous extract (AECR) and hydroalcoholic extract of Campomanesia reitziana leaves (HECR), its ethyl acetate (EAF) and dichloromethane fractions (DCMF), and myricitrin isolated from EAF. METHODS: The total phenols and flavonoids were measured, followed by chromatography and myricitrin isolation. The 2,2-diphenyl-1-picryl-hydrazyl scavenger activity, the cytotoxicity, and the effects on LPS-induced nitrite production in intestinal epithelial cells (IEC-6) were quantified. The effect of HECR, EAF, DCMF, and AECR on intestinal motility (IT), gastric emptying (GE), and castor oil-induced diarrhea in mice was determined, as well as its antimicrobial activity. KEY RESULTS: The administration of AECR 10% (10 ml/kg, p.o), but not HECR (300 mg/kg), reduced the GE and IT by 52 and 51%. The EAF and DCMF at 300 mg/kg also reduced IT but did not change GE. Moreover, AECR and EAF, but not DCMF, inhibited the castor oil-induced diarrhea and naloxone or metoclopramide pretreatment did not change these effects. Myricitrin did not change IT and the evacuation index of mice. Finally, the dry residue of AECR inhibited bacterial growth and EAF showed bacteriostatic activity against S. aureus, E. coli, and S. typhimurium and antifungal for C. albicans. However, none of the preparations alter the viability of Giardia spp. trophozoites. CONCLUSIONS: The AECR and EAF can be effective to treat diarrhea acting through opioid- or dopaminergic type 2 receptor-independent mechanisms and by its antimicrobial actions.


Assuntos
Anti-Infecciosos , Óleo de Rícino , Analgésicos Opioides/efeitos adversos , Animais , Anti-Infecciosos/efeitos adversos , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Óleo de Rícino/toxicidade , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Escherichia coli , Motilidade Gastrointestinal , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Staphylococcus aureus
12.
J Sci Food Agric ; 102(3): 1271-1280, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34358347

RESUMO

BACKGROUND: Forty crossbred steers were supplemented with different doses (from 0 control to 6000 mg/animal/day) of natural additive blend containing clove essential oil, cashew oil, castor oil, and a microencapsulated blend of eugenol, thymol, and vanillin for 80 days. Carcass characteristics, drip loss, and antioxidant activity were evaluated 24 h post mortem on longissimus thoracis, and the effects of aging (until 14 days) were evaluated for water losses (thawing/aging and cooking), texture, color, and lipid oxidation. RESULTS: The use of the natural additive blend did not modify (P > 0.05) carcass characteristics but did, however, modify body composition (P < 0.05). Drip losses were unaffected by the treatments tested (P > 0.05). There was an observed quadratic effect (P < 0.05) on losses from thawing/aging on the first day of storage. Regarding the effects of natural additives on cooking losses, there was a quadratic effect (P < 0.05) among the treatments on day 7 of aging. Differences between days of aging were only observed with control treatment. Shear force was similar among treatments on days 1 and 7 of aging. On day 14 a linear effect (P < 0.05) was observed. Also, a linear effect (P < 0.05) appeared on meat lightness, meat from the control group being clearer on day 1. No changes were observed in redness among treatments or days of storage (P > 0.05). Yellowness was not modified by the treatments (P > 0.05)but only by the days of storage in control and the lowest dosage used. CONCLUSION: The blend of natural additives has potential use in pasture feeding and could improve meat quality. However, doses should be adjusted. © 2021 Society of Chemical Industry.


Assuntos
Anacardium/metabolismo , Ração Animal/análise , Óleo de Rícino/metabolismo , Bovinos/metabolismo , Aditivos Alimentares/metabolismo , Carne/análise , Syzygium/metabolismo , Matadouros , Animais , Benzaldeídos/metabolismo , Bovinos/crescimento & desenvolvimento , Eugenol/metabolismo , Aditivos Alimentares/análise , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Timol/metabolismo
13.
Pharmaceutics ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959305

RESUMO

The methacrylic acid-ethyl acrylate copolymer nanoparticles were prepared using the solvent displacement method. The independent variables were the drug/polymer ratio, surfactant concentration, Polioxyl 40 hydrogenated castor oil, the added water volume, time, and stirring speed, while size, PDI, zeta potential, and encapsulation efficiency were the response variables analyzed. A design of screening experiments was carried out to subsequently perform the optimization of the nanoparticle preparation process. The optimal formulation was characterized through the dependent variables size, PDI, zeta potential, encapsulation efficiency and drug release profiles. In vivo tests were performed in Wistar rats previously induced with diabetes by administration of streptozotocin. Once hyperglycemia was determined in rats, a suspension of nanoparticles loaded with glibenclamide was administered to them while the other group was administered with tablets of glibenclamide. The optimal nanoparticle formulation obtained a size of 18.98 +/- 9.14 nm with a PDI of 0.37085 +/- 0.014 and a zeta potential of -13.7125 +/- 1.82 mV; the encapsulation efficiency was of 44.5%. The in vivo model demonstrated a significant effect (p < 0.05) between the group administered with nanoparticles loaded with glibenclamide and the group administered with tablets compared to the group of untreated individuals.

14.
Polymers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502892

RESUMO

The aim of this work was to evaluate the influence of two kinds of bio- nano-reinforcements, cellulose nanocrystals (CNCs) and bacterial cellulose (BC), on the properties of castor oil-based waterborne polyurethane (WBPU) films. CNCs were obtained by the acidolysis of microcrystalline cellulose, while BC was produced from Komagataeibacter medellinensis. A WBPU/BC composite was prepared by the impregnation of a wet BC membrane and further drying, while the WBPU/CNC composite was obtained by casting. The nanoreinforcement was adequately dispersed in the polymer using any of the preparation methods, obtaining optically transparent compounds. Thermal gravimetric analysis, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, dynamical mechanical analysis, differential scanning calorimetry, contact angle, and water absorption tests were carried out to analyze the chemical, physical, and thermal properties, as well as the morphology of nanocelluloses and composites. The incorporation of nanoreinforcements into the formulation increased the storage modulus above the glass transition temperature of the polymer. The thermal stability of the BC-reinforced composites was slightly higher than that of the CNC composites. In addition, BC allowed maintaining the structural integrity of the composites films, when they were immersed in water. The results were related to the relatively high thermal stability and the particular three-dimensional interconnected reticular morphology of BC.

15.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576654

RESUMO

The present study focuses on an introductory analysis of the use of three xanthophylls as additives for green lubricant applications. For this purpose, the additives were characterized by FTIR and 1H-NMR techniques, and the bio-lubricants were described by their physical properties. The effect of the natural compounds on the friction and wear properties of bio-lubricants were evaluated by sliding friction tests under boundary conditions, as confirmed by an analysis of the lubricating film thickness. The antioxidant capacity was analyzed by FTIR spectroscopy. It was observed better wear protection in castor oil with xanthophylls than without these additives. The wear rate was reduced up to 50% compared with neat oil. Lesser beneficial effects were appreciated in friction coefficient since it was increased 25%. The best contribution was observed with astaxanthin as an additive. In addition, a significant improvement in the oxidation of castor oil, complemented with this additive, was exhibited by FTIR analysis. It was found that xanthophylls could be employed as additives for totally biodegradable lubricant applications since they have better tribological and antioxidant behavior than current additives.

16.
Waste Manag ; 116: 131-139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799094

RESUMO

Waste tire rubber is produced on a large scale in the automotive industry and is considered difficult to recycle because they have iron, nylon, polyester, and chemical structure formed by cross-links. In this way, the waste is almost always deposited in inappropriate places or incorrectly burned, causing a series of environmental problems. The objective of this work was to analyze the viability of the use of waste tire rubber (5, 10, and 20% m/m) reinforced in polyurethane foam (PU) derived from castor oil to obtain composites, as an alternative for raw materials petrochemical industrial. The materials were characterized by scanning electron microscopy (SEM), optical microscopy (OM), apparent density, contact angle, water absorption, X-ray diffractometry (XRD), spectroscopy infrared (FTIR), thermogravimetry (TGA) techniques, and mechanical tests. The results showed that the residue of the rubber powder reinforced with polyurethane caused an increase in the density of the composites when compared to pure PU, which directly influenced the morphological, physical, thermal, and mechanical properties. This fact occurred because with the insertion of rubber powder in the PU there was a decrease in cell size and increase of pore volume. The TG and DTG analyzes showed that the insertion of the rubber powder improved the thermal stability of the composite when compared to pure PU, as well as impact tests and contact angle.


Assuntos
Óleo de Rícino , Poliuretanos , Reciclagem , Borracha , Termogravimetria
17.
Int J Biol Macromol ; 163: 878-887, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653368

RESUMO

Cellulose nanocrystals (CNCs), castor oil (CO), and recycled poly(ethylene terephthalate) (rPET), were used to add value to renewable raw materials and to a recycled polymer produced worldwide, producing mats composed of fibers on the nano- and submicrometric (ultrathin) scales through a sustainable process. Bio-based electrospun mats composed of aligned (rotary collector) and nonaligned (static collector) nanofibers/ultrathin fibers were produced from the electrospinning of solutions prepared from rPET (mixed with CO, CNCs, or CNCs/CO). The contact angle results showed that the CNC mat surfaces composed of nonaligned fibers were hydrophilic, and in contrast, these surfaces were hydrophobic when composed of aligned fibers. Among the mats composed of nonaligned fibers, PET/CO/CNC exhibited storage and Young's moduli approximately eleven and ten times, respectively, better than those of neat rPET. The PET/CO/CNC mat showed both modulus and tensile strength values higher than those of PET/CNC, when characterized in the preferential direction of fiber alignment. Electrospun mats were obtained from environmentally sound raw materials with diversified properties, which were modulated by the type of collector used, as well as whether CO and CNC were mixed with rPET, and have the potential for use in applications such as membrane separation processes and biomedical applications.


Assuntos
Óleo de Rícino/química , Celulose/química , Nanofibras/química , Nanopartículas/química , Polietilenotereftalatos/química , Fenômenos Químicos , Fenômenos Mecânicos , Nanocompostos , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Resistência à Tração
18.
Eur J Pharmacol ; 874: 172986, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032601

RESUMO

Diarrhea is a condition in which the individual has about three or more daily bowel movements, followed by changes in stool consistency. It is currently considered as one of the worst public health problems due to the number of cases and deaths involved and difficulty of treatment. Thus, the use of natural products is an alternative for new treatments. Among these possibilities is Farnesol (C15H26O), a sesquiterpene found in different herbal species that has known biological activities. The objective of this study was to evaluate the antidiarrheal activity of Farnesol (FOH). Initially, FOH activity was evaluated in models of diarrhea and enteropooling induced by castor oil and PGE2. To evaluate motility, the opioid and cholinergic pathways were studied. In addition, the effect of FOH was investigated in the secretion model in intestinal loops treated with cholera toxin. FOH was evaluated for the ability to absorb fluids in intestinal loops and interact with GM1 receptors using the ELISA method and molecular docking. The dose of 50 mg/kg of FOH showed the best results in all antidiarrheal activity tests with castor oil and PGE2, being considered as the standard dose, reducing motility by anticholinergic mechanisms. There was a reduction in fluid secretion when FOH interacted directly with GM1 receptors; cholera toxin and molecular docking showed strong interaction between farnesol and these targets. In view of the results presented, the antidiarrheal activity occurs through anticholinergic, anti-inflammatory and anti-secretory action, making farnesol a potential candidate for the development of a new drug to treat diarrheal diseases.


Assuntos
Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Animais , Óleo de Rícino , Cloretos/metabolismo , Toxina da Cólera , Diarreia/induzido quimicamente , Dinoprostona , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Secreções Intestinais/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores de Superfície Celular/metabolismo
19.
Int J Biol Macromol ; 145: 28-41, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874274

RESUMO

Kraft lignin (KL) and castor oil (CO) were used as polyols in the synthesis of bio-based polyurethanes (PUs) in the absence of both solvents and catalysts at room temperature with simultaneous film formation. KL was purified (PKL), and both KL and PKL were fully characterized. CO was mixed with different percentages of PKL (0%, 10%, 30%, and 50%), as well as with polymeric methyl phenyl diisocyanate. After degassing, the reaction mixture was stirred; when the medium viscosity was suitable for spreading, it was poured onto a glass plate, and the thickness was adjusted using an extender. The storage modulus (E', 25 °C) and tensile strength of the lignopolyurethane films (LignoPUCOPKL) were higher than those of the control film (PUCO). LignoPUCOPKL30 and LignoPUCOPKL50 did not break under the conditions that the other films broke under. It was noted phase segregation (rigid and flexible domains) for LignoPUCOPKL30 and LignoPUCOPKL50, and the glass transition temperature (Tg) of the flexible domains (96.2 °C and 52.3 °C, respectively) was higher than that of PUCO (8.4 °C). The formed films were also characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, contact angles, and swelling tests. To our knowledge, the approach of this study is unprecedented.


Assuntos
Óleo de Rícino/química , Lignina/química , Poliuretanos/química , Poliuretanos/síntese química , Teste de Materiais/métodos , Polímeros/química , Solventes/química , Resistência à Tração , Temperatura de Transição , Viscosidade
20.
Polymers (Basel) ; 11(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731736

RESUMO

Resins of polyurethane were prepared from vegetable oils (crambe and castor) and modified by adding green corrosion inhibitor (condensed tannin). The oils were characterized by gas chromatography with flame-ionization detection (GC-FID), attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) and thermogravimetric analysis (TGA). The reaction was monitored by characterizing the intermediate products (polyester and prepolymer). The polyester was characterized by solubility in methanol, acidity index, hydroxyl groups and FTIR-ATR, and the prepolymer was characterized by solid content, solvent content, isocyanate (NCO) groups and FTIR-ATR. The formation of PU resins was confirmed by FTIR-ATR and TGA, and the presence of tannin particles incorporated in the coating can be observed by optical microscopy (OM). The absence of the band attributed to NCO in FTIR-ATR spectra of the resins confirmed the complete reaction between polyester and prepolymer. The OM observation and a video demonstrate that Polyurethane (PU)-modified with condensed tannin resin presents self-healing effect, probably through the formation of new hydrogen bonds when in contact with deionized water. Therefore, these results open possibilities for new synthetic routes aiming at improving the very important self-healing property for protecting metals and their alloys against corrosion, extending significantly the metallic materials lifetime as previously demonstrated by our group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA