Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
mBio ; 15(7): e0103124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38916308

RESUMO

Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.


Assuntos
Antifúngicos , Criptococose , Cryptococcus neoformans , Saccharomyces cerevisiae , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Animais , Camundongos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Modelos Animais de Doenças , Macrófagos/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Caspofungina/farmacologia , Feminino , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Anfotericina B/farmacologia
2.
Molecules ; 28(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067648

RESUMO

(1) Background: Previous studies reported the promising inhibitory effect of cold atmospheric plasma (CAP) on Candida albicans. However, the exact mechanisms of CAP's action on the fungal cell are still poorly understood. This study aims to elucidate the CAP effect on C. albicans cell wall, by evaluating the alterations on its structure and biochemical composition; (2) Methods: C. albicans cells treated with Helium-CAP were analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in order to detect morphological, topographic and biochemical changes in the fungal cell wall. Cells treated with caspofungin were also analyzed for comparative purposes; (3) Results: Expressive morphological and topographic changes, such as increased roughness and shape modification, were observed in the cells after CAP exposure. The alterations detected were similar to those observed after the treatment with caspofungin. The main biochemical changes occurred in polysaccharides content, and an overall decrease in glucans and an increase in chitin synthesis were detected; (4) Conclusions: Helium-CAP caused morphological and topographic alterations in C. albicans cells and affected the cell wall polysaccharide content.


Assuntos
Candida albicans , Gases em Plasma , Caspofungina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/análise , Equinocandinas/farmacologia , Hélio , Lipopeptídeos/farmacologia , Gases em Plasma/farmacologia , Parede Celular/química
3.
J Fungi (Basel) ; 9(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623630

RESUMO

Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.

4.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675910

RESUMO

The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.

5.
Antimicrob Agents Chemother ; 66(9): e0070122, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35916517

RESUMO

Aspergillus fumigatus is the main etiological agent of aspergillosis. The antifungal drug caspofungin (CSP) can be used against A. fumigatus, and CSP tolerance is observed. We have previously shown that the transcription factor FhdA is important for mitochondrial activity. Here, we show that FhdA regulates genes transcribed by RNA polymerase II and III. FhdA influences the expression of tRNAs that are important for mitochondrial function upon CSP. Our results show a completely novel mechanism that is impacted by CSP.


Assuntos
Antifúngicos , Aspergillus fumigatus , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Caspofungina/farmacologia , Uso do Códon , Equinocandinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipopeptídeos/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/genética
6.
J Fungi (Basel) ; 8(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36012803

RESUMO

Trichophyton rubrum is responsible for several superficial human mycoses. Novel strategies aimed at controlling this pathogen are being investigated. The objective of this study was to evaluate the antifungal activity of the antidepressant sertraline (SRT), either alone or in combination with caspofungin (CASP). We calculated the minimum inhibitory concentrations of SRT and CASP against T. rubrum. Interactions between SRT and CASP were evaluated using a broth microdilution chequerboard. We assessed the differential expression of T. rubrum cultivated in the presence of SRT or combinations of SRT and CASP. We used MTT and violet crystal assays to compare the effect of SRT alone on T. rubrum biofilms with that of the synergistic combination of SRT and CASP. A human nail infection assay was performed. SRT alone, or in combination with CASP, exhibited antifungal activity against T. rubrum. SRT targets genes involved in the biosyntheses of cell wall and ergosterol. Furthermore, the metabolic activity of the T. rubrum biofilm and its biomass were affected by SRT and the combination of SRT and CASP. SRT alone, or in combination, shows potential as an approach to minimise resistance and reduce virulence.

7.
mBio ; 13(3): e0044722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420487

RESUMO

Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.


Assuntos
Aspergillus fumigatus , Águias , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Caspofungina/farmacologia , Águias/metabolismo , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Esporos Fúngicos/metabolismo
8.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718550

RESUMO

Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.


Assuntos
Aspergillus fumigatus
9.
Cardiovasc Toxicol ; 21(2): 93-105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32845461

RESUMO

Caspofungin is an echinocandin, exhibiting efficacy against most Candida species invasive infection. Its cardiotoxicity was reported in isolated rat heart and ventricular myocytes, but in vivo and clinical studies are insufficient. Our objective was to evaluate caspofungin in vivo cardiac effects using an efficacious dose against Candida albicans. Female Swiss mice were infected with C. albicans, and treated with caspofungin, 5 or 10 mg/kg, intraperitoneal along 5 days. Survival rate and colony-forming units (CFU) into vital organs were determined. For cardiac effects study, mice were treated with caspofungin 10 mg/kg, and electrocardiogram (ECG) signal was obtained on C. albicans-infected mice, single dose-treated, and uninfected mice treated along 5 days, both groups to measure ECG intervals. Besides, ECG was also obtained by telemetry on uninfected mice to evaluate heart rate variability (HRV) parameters. The MIC for caspofungin on the wild-type C. albicans SC5314 strain was 0.3 µg/ml, indicating the susceptible. Survival rate increased significantly in infected mice treated with caspofungin compared to mice treated with vehicle. None of the survived infected mice presented positive CFU after treatment with 10 mg/kg. C. albicans infection induced prolongation of QRS, QT, and QTc intervals; caspofungin did not alter this effect. Caspofungin induced increase of PR and an additional increase of QRS after 24 h of a single dose in infected mice. No significant alterations occurred in ECG intervals and HRV parameters of uninfected mice, after caspofungin treatment. Caspofungin showed in vivo cardiac relative safety maintaining its antifungal efficacy against C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Caspofungina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Animais , Antifúngicos/toxicidade , Candida albicans/patogenicidade , Candidíase/microbiologia , Cardiotoxicidade , Caspofungina/toxicidade , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Coração/fisiopatologia , Camundongos , Testes de Sensibilidade Microbiana , Medição de Risco , Testes de Toxicidade
10.
Front Fungal Biol ; 2: 689900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744107

RESUMO

Invasive pulmonary aspergillosis is a life-threatening fungal infection especially in the immunocompromised patients. The low diversity of available antifungal drugs coupled with the emergence of antifungal resistance has become a worldwide clinical concern. The echinocandin Caspofungin (CSP) is recommended as a second-line therapy but resistance and tolerance mechanisms have been reported. However, how the fungal cell articulates the response to CSP is not completely understood. This work provides a detailed characterization of ZnfA, a transcription factor (TF) identified in previous screening studies that is involved in the A. fumigatus responses to calcium and CSP. This TF plays an important role in the regulation of iron homeostasis and cell wall organization in response to high CSP concentrations as revealed by Chromatin Immunoprecipitation coupled to DNA sequencing (ChIP-seq) analysis. Furthermore, ZnfA acts collaboratively with the key TF CrzA in modulating the response to calcium as well as cell wall and osmotic stresses. This study therefore describes the existence of an additional, previously unknown TF that bridges calcium signaling and the CSP cellular response and further exposes the complex connections that exist among different pathways which govern stress sensing and signaling in A. fumigatus.

11.
J Fungi (Basel) ; 6(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019733

RESUMO

Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) is well-known for its resistance profile to different available antifungal drugs. Although echinocandins are the most effective class of antifungal compounds against the C. haemulonii species complex, clinical isolates resistant to caspofungin, micafungin and anidulafungin have already been reported. In this work, we present a literature review regarding the effects of echinocandins on this emergent fungal complex. Published data has revealed that micafungin and anidulafungin were more effective than caspofungin against the species forming the C. haemulonii complex. Subsequently, we investigated the susceptibilities of both planktonic and biofilm forms of 12 Brazilian clinical isolates of the C. haemulonii complex towards caspofungin and micafungin (anidulafungin was unavailable). The planktonic cells of all the fungal isolates were susceptible to both of the test echinocandins. Interestingly, echinocandins caused a significant reduction in the biofilm metabolic activity (viability) of almost all fungal isolates (11/12, 91.7%). Generally, the biofilm biomasses were also affected (reduction range 20-60%) upon exposure to caspofungin and micafungin. This is the first report of the anti-biofilm action of echinocandins against the multidrug-resistant opportunistic pathogens comprising the C. haemulonii complex, and unveils the therapeutic potential of these compounds.

12.
mSphere ; 5(5)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938702

RESUMO

The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCEAspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


Assuntos
Adaptação Fisiológica , Aspergillus fumigatus/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Interações Hospedeiro-Patógeno , Larva/microbiologia , Mariposas/microbiologia , Concentração Osmolar , Pressão Osmótica , Proteômica , Virulência
13.
Antibiotics (Basel) ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887362

RESUMO

Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.

14.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546620

RESUMO

Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug ß-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance.IMPORTANCEAspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive ß-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Caspofungina/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antifúngicos/farmacologia , Aspergilose/microbiologia , Feminino , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Transdução de Sinais
15.
FEMS Yeast Res ; 20(5)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584995

RESUMO

Candida albicans is the most common human fungal pathogen that can cause superficial and deep-seated infections in susceptible individuals. Despite its medical importance, the vast majority of C. albicans genes remain of unknown function. Here, we report a role for the lineage-specific gene, MRV8, in host pathogen interactions, mycelial microcolony maturation and biofilm formation. In silico analysis indicated that MRV8 encodes a four-pass transmembrane protein unique to the closely related pathogens C. albicans and Candida dubliniensis. Deletion of MRV8 did not affect C. albicans adherence to, or initial invasion into human oral epithelia, but inhibited mycelial development and strongly reduced epithelial damage. mrv8Δ/Δ cells exhibited a media-dependent defect in biofilm formation and mutant biofilm metabolic activity was enhanced by cyclosporin A. mrv8Δ/Δ biofilms were more tolerant to treatment with caspofungin, but not to fluconazole or amphotericin B. Co-stimulation with calcium chloride and calcofluor white rescued biofilm growth in the presence of caspofungin, and this rescue-effect was Mrv8-dependent. Together, our data demonstrate an important role for a lineage-specific gene (MRV8) in C. albicans biofilm formation, drug tolerance and host-pathogen interactions.


Assuntos
Biofilmes , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Mucosa Bucal/microbiologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Humanos
16.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461274

RESUMO

Aspergillus fumigatus is an opportunistic and allergenic pathogenic fungus, responsible for fungal infections in humans. A. fumigatus infections are usually treated with polyenes, azoles, or echinocandins. Echinocandins, such as caspofungin, can inhibit the biosynthesis of the ß-1,3-glucan polysaccharide, affecting the integrity of the cell wall and leading to fungal death. In some A. fumigatus strains, caspofungin treatment at high concentrations induces an increase of fungal growth, a phenomenon called the caspofungin paradoxical effect (CPE). Here, we analyze the proteome and phosphoproteome of the A. fumigatus wild-type strain and of mitogen-activated protein kinase (MAPK) mpkA and sakA null mutant strains during CPE (2 µg/ml caspofungin for 1 h). The wild-type proteome showed 75 proteins and 814 phosphopeptides (corresponding to 520 proteins) altered in abundance in response to caspofungin treatment. The ΔmpkA (ΔmpkA caspofungin/wild-type caspofungin) and ΔsakA (ΔsakA caspofungin/wild-type caspofungin) strains displayed 626 proteins and 1,236 phosphopeptides (corresponding to 703 proteins) and 101 proteins and 1,217 phosphopeptides (corresponding to 645 proteins), respectively, altered in abundance. Functional characterization of the phosphopeptides from the wild-type strain exposed to caspofungin showed enrichment for transcription factors, protein kinases, and cytoskeleton proteins. Proteomic analysis of the ΔmpkA and ΔsakA mutants indicated that control of proteins involved in metabolism, such as in production of secondary metabolites, was highly represented in both mutants. Results of functional categorization of phosphopeptides from both mutants were very similar and showed a high number of proteins with decreased phosphorylation of proteins involved in transcriptional control, DNA/RNA binding, cell cycle control, and DNA processing. This report reveals novel transcription factors involved in caspofungin tolerance.IMPORTANCEAspergillus fumigatus is an opportunistic human-pathogenic fungus causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. Caspofungin is an echinocandin that impacts the construction of the fungal cell wall by inhibiting the biosynthesis of the ß-1,3-glucan polysaccharide. Caspofungin is a fungistatic drug and is recommended as a second-line therapy for treatment of aspergillosis. Treatment at high concentrations induces an increase of fungal growth, a phenomenon called the caspofungin paradoxical effect (CPE). Collaboration between the mitogen-activated protein kinases (MAPK) of the cell wall integrity (MapkA) and high-osmolarity glycerol (SakA) pathways is essential for CPE. Here, we investigate the global proteome and phosphoproteome of A. fumigatus wild-type, ΔmpkA, and ΔsakA strains upon CPE. This study showed intense cross talk between the two MAPKs for the CPE and identified novel protein kinases and transcription factors possibly important for CPE. Increased understanding of how the modulation of protein phosphorylation may affect the fungal growth in the presence of caspofungin represents an important step in the development of new strategies and methods to combat the fungus inside the host.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/química , Aspergillus fumigatus/efeitos dos fármacos , Caspofungina/farmacologia , Fosfopeptídeos/química , Proteoma , Aspergillus fumigatus/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Espectrometria de Massas , Fosfopeptídeos/genética , Fosforilação , Proteômica , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição
17.
mBio ; 11(1)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019798

RESUMO

The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Caspofungina/farmacologia , Parede Celular/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aspergillus fumigatus/genética , Parede Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Concentração Osmolar , Pressão Osmótica , Fosforilação , Proteoma , Transdução de Sinais
18.
Int J Infect Dis ; 92: 123-126, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935536

RESUMO

BACKGROUND: Candida haemulonii is an emergent, multi-resistant opportunistic pathogenic yeast that like Candida auris, can be misidentified when conventional diagnostic methods are used. Timely molecular identification using DNA sequence analysis variation in the internal transcriber spacer region, ITS1-ITS4 and the 28S ribosomal DNA gene (28S rDNA), and in vitro antifungal susceptibility assessment can lead to rapid therapeutic success. CASE REPORT: A case of Candida haemulonii candidiasis suffered by a male paediatric patient attended at Federico Gómez Children's Hospital of México City in September 2016 is reported. The isolate was yielded from peripheral blood and central catheter blood specimens. From in vitro antifungal susceptibility data, caspofungin was administered to the patient, who showed clear improvements at the end of antimicrobial administration, and the removal of the central venous catheter. Using a molecular phylogenetic approach, we identified the clinical isolate as C. haemulonii. The clinical isolate has been named as Candida haemulonii ENCB-87 from now on. C. haemulonii ENCB-87 grew well between the temperatures, 28 °C and 35 °C but not at 37 °C in YPD culture medium. The clinical isolate was susceptible to caspofungin, which resulted in therapeutic success for the patient. CONCLUSIONS: C. haemulonii is an emergent, opportunistic pathogen, closely related to C. auris, therefore, the timely and accurate identification and antifungal susceptibility assessments are paramount in generating a robust epidemiology of this emerging Candida species.


Assuntos
Candida/isolamento & purificação , Candidíase/etiologia , Infecções Relacionadas a Cateter/microbiologia , Hospitais Pediátricos , Antifúngicos/uso terapêutico , Candida/classificação , Candidíase/tratamento farmacológico , Caspofungina/uso terapêutico , DNA Fúngico , DNA Ribossômico , Humanos , Lactente , Masculino , México , Testes de Sensibilidade Microbiana , Tipagem Molecular , Filogenia , Análise de Sequência de DNA
19.
Arch. argent. pediatr ; 115(5): 307-310, oct. 2017. ilus
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-887383

RESUMO

Las nuevas opciones de tratamiento prolongan la hospitalización y aumentan las infecciones intrahospitalarias bacterianas y fúngicas, pero también mejoran la sobrevida de los recién nacidos hospitalizados en la unidad de cuidados intensivos neonatales. Las infecciones fúngicas invasivas en neonatos están asociadas con una morbimortalidad significativa. También pueden diseminarse a órganos específicos y causar endocarditis, endoftalmitis, artritis séptica, nefropatía obstructiva y meningitis. En el caso de la endocarditis, se recomiendan tratamientos antimicóticos sistémicos agresivos y, en algunos casos, la intervención quirúrgica del neonato. Informamos el caso de un lactante prematuro, de bajo peso al nacer, con vegetación intracardíaca. Esta es una complicación rara y potencialmente mortal de infecciones fúngicas invasivas. El paciente recibió tratamiento con caspofungina y un activador tisular del plasminógeno recombinante, en vez de una intervención quirúrgica.


Developing treatment options have resulted in prolonged admission and increased bacterial and fungal nosocomial infections as well as improved survival in neonatal intensive care unit. Invasive fungal infections in newborns are associated with significant morbidity and mortality and can cause endorgan dissemination such as endocarditis, endophthalmitis, septic arthritis, obstructive nephropathy and meningitis. Endocarditis requires aggressive systemic antifungal therapy and sometimes surgical intervention in neonates. We report a low birth weight premature infant with intracardiac vegetation that is rare and a life-threatening complication of invasive fungal infections. He was treated with caspofungin and recombinant tissue plasminogen activator in stead of surgical intervention.


Assuntos
Humanos , Masculino , Recém-Nascido , Candidíase/tratamento farmacológico , Ativador de Plasminogênio Tecidual , Endocardite/microbiologia , Endocardite/tratamento farmacológico , Equinocandinas/uso terapêutico , Lipopeptídeos/uso terapêutico , Candida parapsilosis , Antifúngicos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Recém-Nascido de muito Baixo Peso
20.
Arch Argent Pediatr ; 115(5): e307-e310, 2017 Oct 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28895709

RESUMO

Developing treatment options have resulted in prolonged admission and increased bacterial and fungal nosocomial infections as well as improved survival in neonatal intensive care unit. Invasive fungal infections in newborns are associated with significant morbidity and mortality and can cause endorgan dissemination such as endocarditis, endophthalmitis, septic arthritis, obstructive nephropathy and meningitis. Endocarditis requires aggressive systemic antifungal therapy and sometimes surgical intervention in neonates. We report a low birth weight premature infant with intracardiac vegetation that is rare and a life-threatening complication of invasive fungal infections. He was treated with caspofungin and recombinant tissue plasminogen activator in stead of surgical intervention.


Las nuevas opciones de tratamiento prolongan la hospitalización y aumentan las infecciones intrahospitalarias bacterianas y fúngicas, pero también mejoran la sobrevida de los recién nacidos hospitalizados en la unidad de cuidados intensivos neonatales. Las infecciones fúngicas invasivas en neonatos están asociadas con una morbimortalidad significativa. También pueden diseminarse a órganos específicos y causar endocarditis, endoftalmitis, artritis séptica, nefropatía obstructiva y meningitis. En el caso de la endocarditis, se recomiendan tratamientos antimicóticos sistémicos agresivos y, en algunos casos, la intervención quirúrgica del neonato. Informamos el caso de un lactante prematuro, de bajo peso al nacer, con vegetación intracardíaca. Esta es una complicación rara y potencialmente mortal de infecciones fúngicas invasivas. El paciente recibió tratamiento con caspofungina y un activador tisular del plasminógeno recombinante, en vez de una intervención quirúrgica.


Assuntos
Antifúngicos/uso terapêutico , Candida parapsilosis , Candidíase/tratamento farmacológico , Equinocandinas/uso terapêutico , Endocardite/tratamento farmacológico , Endocardite/microbiologia , Lipopeptídeos/uso terapêutico , Ativador de Plasminogênio Tecidual/uso terapêutico , Caspofungina , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA