Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 56(4): 373-387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38869808

RESUMO

Hypercholesterolemia is one of the most important risk factors for cardiovascular diseases. However, it is mostly associated with vascular dysfunction and atherosclerotic lesions, while evidence of direct effects of hypercholesterolemia on cardiomyocytes and heart function is still incomplete and controversial. In this study, we assessed the direct effects of hypercholesterolemia on heart function and the electro-contractile properties of isolated cardiomyocytes. After 5 weeks, male Swiss mice fed with AIN-93 diet added with 1.25% cholesterol (CHO), developed an increase in total serum cholesterol levels and cardiomyocytes cholesterol content. These changes led to altered electrocardiographic records, with a shortening of the QT interval. Isolated cardiomyocytes displayed a shortening of the action potential duration with increased rate of depolarization, which was explained by increased IK, reduced ICa.L and altered INa voltage-dependent inactivation. Also, reduced diastolic [Ca2+]i was found with preserved adrenergic response and cellular contraction function. However, contraction of isolated hearts is impaired in isolated CHO hearts, before and after ischemia/reperfusion, although CHO heart was less susceptible to arrhythmic contractions. Overall, our results demonstrate that early hypercholesterolemia-driven increase in cellular cholesterol content is associated with direct modulation of the heart and cardiomyocytes' excitability, Ca2+ handling, and contraction.


Assuntos
Hipercolesterolemia , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Hipercolesterolemia/fisiopatologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Camundongos , Masculino
2.
Am J Physiol Cell Physiol ; 326(5): C1334-C1344, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557356

RESUMO

Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.


Assuntos
Miócitos Cardíacos , Propranolol , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Masculino , Coração/efeitos dos fármacos , Células Cultivadas , Agonistas Adrenérgicos beta/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia
3.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619735

RESUMO

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Assuntos
Potenciais de Ação , Amiodarona , Antiarrítmicos , Arritmias Cardíacas , Átrios do Coração , Miócitos Cardíacos , Ratos Wistar , Animais , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Masculino , Humanos , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Concentração de Íons de Hidrogênio , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293 , Sódio/metabolismo , Técnicas de Patch-Clamp , Venenos de Cnidários/farmacologia
4.
Sci Total Environ ; 915: 170028, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38224882

RESUMO

Atrazine is a ubiquitous herbicide with persistent environmental presence and accumulation in the food chain, posing potential health hazards to organisms. Increasing evidence suggests that atrazine may have detrimental effects on various organ systems, including the nervous, digestive, and immune systems. However, the specific toxicity and underlying mechanism of atrazine-induced cardiac injury remain obscure. In this study, 4-week-old male C57BL/6 mice were administered atrazine via intragastric administration at doses of 50 and 200 mg/kg for 4 and 8 weeks, respectively. Our findings showed that atrazine exposure led to cardiac fibrosis, as evidenced by elevated heart index and histopathological scores, extensive myofiber damage, and interstitial collagen deposition. Moreover, atrazine induced cardiomyocyte apoptosis, macrophage infiltration, and excessive production of inflammatory factors. Importantly, atrazine upregulated the expressions of crucial pyroptosis proteins, including NLRP3, ASC, CASPASE1, and GSDMD, via the activation of NF-κB pathway, thus promoting cardiomyocyte pyroptosis. Collectively, our findings provide novel evidence demonstrating that atrazine may exacerbate myocardial fibrosis by inducing cardiomyocyte pyroptosis, highlighting its potential role in the development of cardiac fibrosis.


Assuntos
Atrazina , NF-kappa B , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Cardiotoxicidade , Piroptose , Miócitos Cardíacos , Fibrose
5.
Clinics (Sao Paulo) ; 78: 100273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37591108

RESUMO

OBJECTIVES: Myocardial Infarction (MI) is the leading cause of chronic heart failure. Previous studies have suggested that Vav3, a receptor protein tyrosine kinase signal transducer, is associated with a variety of cellular signaling processes such as cell morphology regulation and cell transformation with oncogenic activity. However, the mechanism of Vav3-mediated MI development requires further investigation. METHOD: Here, The authors established an MI rat model by ligating the anterior descending branch of the left coronary artery, and an MI cell model by treating cardiomyocytes with H2O2. Microarray analysis was conducted to identify genes with differential expression in heart tissues relevant to MI occurrence and development. Vav3 was thus selected for further investigation. RESULTS: Vav3 downregulation was observed in MI heart tissue and H2O2-treated cardiomyocytes. Administration of Lentiviral Vav3 (LV-VAV3) in MI rats upregulated Vav3 expression in MI heart tissue. Restoration of Vav3 expression reduced infarct area and ameliorated cardiac function in MI rats. Cardiac inflammation, apoptosis, and upregulation of NFκB signal in heart tissue of MI animals were assessed using ELISA, TUNEL staining, real-time PCR, and WB. Vav3 overexpression reduced cardiac inflammation and apoptosis and inhibited NFκB expression and activation. Betulinic Acid (BA) was then used to re-activate NFκB in Vav3-overexpressed and H2O2-induced cardiomyocytes. The expression of P50 and P65, as well as nuclear P65, was significantly increased by BA exposure. CONCLUSIONS: Vav3 might serve as a target to reduce ischemia damage by suppressing the inflammation and apoptosis of cardiomyocytes.


Assuntos
Peróxido de Hidrogênio , Infarto do Miocárdio , Animais , Ratos , Apoptose , Ácido Betulínico , Morte Celular , Peróxido de Hidrogênio/farmacologia , Inflamação , Infarto do Miocárdio/genética , NF-kappa B
6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569680

RESUMO

Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Ratos , Animais , Cálcio/metabolismo , Ratos Wistar , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta/metabolismo , Estenose da Valva Aórtica/metabolismo , Exercício Físico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
7.
Clinics (Sao Paulo) ; 78: 100268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37567042

RESUMO

OBJECTIVE: Trastuzumab is the preferred drug for the treatment of breast cancer. However, research on the cellular mechanisms of trastuzumab's potential cardiotoxicity is insufficient. The purpose of this study was to explore the toxic effects and potential mechanism of action of trastuzumab on cardiomyocytes. METHOD: Human Cardiomyocyte (HCM) viability was assessed using the MTT method. HCM apoptosis was detected using the Hoechst33342/PI Fluorescent staining. The LDH and CK activities of the cell were measured using commercially available LDH and CK assay kits. The expression levels of Notch2, JAK2, STAT3, cleaved caspase 3, bax, and bcl 2 in HCMs were detected using western blotting. RESULTS: The results showed that 250 mg/L trastuzumab induced cardiomyocyte injury and apoptosis, inhibited viability, activated the Notch2 receptor, and inhibited JAK2/STAT3 expression in HCM. Inhibition of Notch2 expression in HCM by targeted siNotch2 transfection reversed the trastuzumab-induced injury and apoptosis, and the expression of JAK2/STAT3 returned to normal levels. CONCLUSIONS: Trastuzumab induces Notch2 expression by inhibiting the JAK2/STAT3 pathway of HCMs, promotes cell apoptosis, and causes cardiomyocyteinjury. Notch2 may be a potential target of trastuzumab-inducedmyocardial injury. This experiment reveals the mechanism of trastuzumab-induced cardiotoxicity, providing a theoretical basis for the application of trastuzumab.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Trastuzumab/efeitos adversos , Trastuzumab/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Receptor Notch2/metabolismo , Apoptose , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia
8.
Biol Res ; 56(1): 20, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37143143

RESUMO

BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis.


Assuntos
Propofol , Humanos , Camundongos , Animais , Propofol/farmacologia , Hipóxia , Células Endoteliais da Veia Umbilical Humana , Miócitos Cardíacos , Estresse Oxidativo , Apoptose/fisiologia , Chaperonina com TCP-1
9.
Acta Trop ; 240: 106845, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709791

RESUMO

Chagas disease is caused by the parasite Trypanosoma cruzi (T. cruzi) and, among all the chronic manifestations of the disease, Chronic Chagas Cardiomyopathy (CCC) is the most severe outcome. Despite high burden and public health importance in Latin America, there is a gap in understanding the molecular mechanisms that results in CCC development. Previous studies showed that T. cruzi uses the host machinery for infection and replication, including the repurposing of the responses to intracellular infection such as mitochondrial activity, vacuolar membrane, and lysosomal activation in benefit of parasite infection and replication. One common signaling upstream to many responses to parasite infection is mTOR pathway, previous associated to several downstream cellular mechanisms including autophagy, mitophagy and lysosomal activation. Here, using human iPSC derived cardiomyocytes (hiPSCCM), we show the mTOR pathway is activated in hiPSCCM after T. cruzi infection, and the inhibition of mTOR with rapamycin reduced number of T. cruzi 48 h post infection (hpi). Rapamycin treatment also reduced lysosome migration from nuclei region to cell periphery resulting in less T. cruzi inside the parasitophorous vacuole (PV) in the first hour of infection. In addition, the number of parasites leaving the PV to the cytoplasm to replicate in later times of infection was also lower after rapamycin treatment. Altogether, our data suggest that host's mTOR activation concomitant with parasite infection modulates lysosome migration and that T. cruzi uses this mechanism to achieve infection and replication. Modulating this mechanism with rapamycin impaired the success of T. cruzi life cycle independent of mitophagy.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Doença de Chagas/parasitologia , Trypanosoma cruzi/fisiologia , Serina-Treonina Quinases TOR , Lisossomos/metabolismo , Lisossomos/parasitologia , Sirolimo/metabolismo
10.
Biol. Res ; 56: 20-20, 2023. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1513733

RESUMO

BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis. Highlights Microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs) exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes. Microvesicles from propofol post-treated HUVECs ((HR + P)-EMVs) induced diminished oxidative stress and apoptosis in IR-injured cardiomyocytes compared with microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs). lncCCT4-2 was significantly highly expressed in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs, and reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. lncCCT4-2 inhibited HR-EMVs induced oxidative stress and apoptosis in HR-injured AC16 cells by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in AC16 cells.


Assuntos
Humanos , Animais , Camundongos , Propofol/farmacologia , Apoptose/fisiologia , Estresse Oxidativo , Miócitos Cardíacos , Chaperonina com TCP-1 , Células Endoteliais da Veia Umbilical Humana , Hipóxia
11.
Clinics ; Clinics;78: 100268, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520696

RESUMO

Abstract Objective Trastuzumab is the preferred drug for the treatment of breast cancer. However, research on the cellular mechanisms of trastuzumab's potential cardiotoxicity is insufficient. The purpose of this study was to explore the toxic effects and potential mechanism of action of trastuzumab on cardiomyocytes. Method Human Cardiomyocyte (HCM) viability was assessed using the MTT method. HCM apoptosis was detected using the Hoechst33342/PI Fluorescent staining. The LDH and CK activities of the cell were measured using commercially available LDH and CK assay kits. The expression levels of Notch2, JAK2, STAT3, cleaved caspase 3, bax, and bcl 2 in HCMs were detected using western blotting. Results The results showed that 250 mg/L trastuzumab induced cardiomyocyte injury and apoptosis, inhibited viability, activated the Notch2 receptor, and inhibited JAK2/STAT3 expression in HCM. Inhibition of Notch2 expression in HCM by targeted siNotch2 transfection reversed the trastuzumab-induced injury and apoptosis, and the expression of JAK2/STAT3 returned to normal levels. Conclusions Trastuzumab induces Notch2 expression by inhibiting the JAK2/STAT3 pathway of HCMs, promotes cell apoptosis, and causes cardiomyocyteinjury. Notch2 may be a potential target of trastuzumab-inducedmyocardial injury. This experiment reveals the mechanism of trastuzumab-induced cardiotoxicity, providing a theoretical basis for the application of trastuzumab.

12.
Clinics ; Clinics;78: 100273, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520708

RESUMO

Abstract Objectives Myocardial Infarction (MI) is the leading cause of chronic heart failure. Previous studies have suggested that Vav3, a receptor protein tyrosine kinase signal transducer, is associated with a variety of cellular signaling processes such as cell morphology regulation and cell transformation with oncogenic activity. However, the mechanism of Vav3-mediated MI development requires further investigation. Method Here, The authors established an MI rat model by ligating the anterior descending branch of the left coronary artery, and an MI cell model by treating cardiomyocytes with H2O2. Microarray analysis was conducted to identify genes with differential expression in heart tissues relevant to MI occurrence and development. Vav3 was thus selected for further investigation. Results Vav3 downregulation was observed in MI heart tissue and H2O2-treated cardiomyocytes. Administration of Lentiviral Vav3 (LV-VAV3) in MI rats upregulated Vav3 expression in MI heart tissue. Restoration of Vav3 expression reduced infarct area and ameliorated cardiac function in MI rats. Cardiac inflammation, apoptosis, and upregulation of NFκB signal in heart tissue of MI animals were assessed using ELISA, TUNEL staining, real-time PCR, and WB. Vav3 overexpression reduced cardiac inflammation and apoptosis and inhibited NFκB expression and activation. Betulinic Acid (BA) was then used to re-activate NFκB in Vav3-overexpressed and H2O2-induced cardiomyocytes. The expression of P50 and P65, as well as nuclear P65, was significantly increased by BA exposure. Conclusions Vav3 might serve as a target to reduce ischemia damage by suppressing the inflammation and apoptosis of cardiomyocytes.

13.
Life Sci ; 308: 120945, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096245

RESUMO

AIMS: Hypothyroidism is associated with an increased risk of cardiovascular disease and enhanced susceptibility to arrhythmias. In our investigation, we evaluated the potential involvement of late sodium current (INa,late) in cardiac arrhythmias in an experimental murine model of hypothyroidism. MAIN METHODS: Male Swiss mice were treated with methimazole (0.1 % w/vol, during 21 days) to induce experimental hypothyroidism before ECG, action potential (AP) and intracellular Ca2+ dynamics were evaluated. Susceptibility to arrhythmia was measured in vitro and in vivo. KEY FINDINGS: The results revealed that hypothyroid animals presented ECG alterations (e.g. increased QTc) with the presence of spontaneous sustained ventricular tachycardia. These changes were associated with depolarized resting membrane potential in isolated cardiomyocytes and increased AP duration and dispersion at 90 % of the repolarization. Aberrant AP waveforms were related to increased Ca2+ sparks and out-of-pace Ca2+ waves. These changes were observed in a scenario of enhanced INa,late. Interestingly, ranolazine, a clinically used blocker of INa,late, restored the ECG alterations, reduced Ca2+ sparks and aberrant waves, decreased the in vitro events and the severity of arrhythmias observed in isolated cardiomyocytes from hypothyroid animals. Using the in vivo dobutamine + caffeine protocol, animals with hypothyroidism developed catecholaminergic bidirectional ventricular tachycardia, but pre-treatment with ranolazine prevented this. SIGNIFICANCE: We concluded that animals with hypothyroidism have increased susceptibility to developing arrhythmias and ranolazine, a clinically used blocker of INa,late, is able to correct the arrhythmic phenotype.


Assuntos
Hipotireoidismo , Metimazol , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Cafeína , Dobutamina , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/complicações , Masculino , Camundongos , Miócitos Cardíacos , Fenótipo , Ranolazina/farmacologia , Sódio
14.
Front Cardiovasc Med ; 9: 880151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783835

RESUMO

Background: Chronic Chagas cardiomyopathy (CCC) constitutes the most life-threatening consequence of the Trypanosoma cruzi infection. Our goal was to test in CCC the associations of the myocardial tissue phenotype with cardiac dysfunction, and heart failure (HF) severity, using cardiac magnetic resonance (CMR). Methods: We performed a prospective observational cohort of patients with consecutive CCC with a CMR protocol, including ventricular function, myocardial T1, and late gadolinium enhancement (LGE). Extracellular volume (ECV), and intracellular water lifetime, τic, a measure of cardiomyocyte diameter, were compared to CCC disease progression, including Rassi score and New York Heart Association (NYHA) class. An exploratory prognostic analysis was performed to investigate the association of both ECV and τic with CV death. Results: A total of 37 patients with intermediate-to-high-risk CCC were enrolled (Chagas Rassi score ≥7, mean left ventricle (LV) ejection fraction (EF) 32 ± 16%). Myocardial ECV (0.40 ± 0.07) was correlated with Rassi score (r = 0.43; P = 0.009), higher NYHA class, and LV EF (r = -0.51; P = 0.0015). τic decreased linearly with NYHA class (P = 0.007 for non-parametric test of linear trend) and showed a positive association with LV EF (r = 0.47; P = 0.004). Over a median follow-up of 734 days (range: 6-2,943 days), CV death or cardiac transplantation occurred in 10 patients. The Rassi score (heart rate [HR] = 1.3; 95% CI = [1.0, 1.8]; P = 0.028) and ECV (HR = 3.4 for 0.1 change, 95% CI = [1.1, 11.0], P = 0.039) were simultaneously associated with CV death. Conclusion: In patients with intermediate-to-high-risk CCC, an expanded ECV and regression of cardiomyocyte diameter were associated with worsening systolic function and HF severity, respectively. The exploratory analysis indicates that ECV may have a prognostic value to identify patients with CCC at a higher risk for cardiovascular events.

15.
Life Sci ; 304: 120723, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718233

RESUMO

MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.


Assuntos
MicroRNAs , Adaptação Fisiológica , Animais , Exercício Físico/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
16.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264016

RESUMO

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Assuntos
Colinérgicos , Norepinefrina , Adrenérgicos , Animais , Camundongos , Miócitos Cardíacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
17.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216382

RESUMO

BACKGROUND: Acute renal failure (ARF) following renal ischemia-reperfusion (I/R) injury is considered a relevant risk factor for cardiac damage, but the underlying mechanisms, particularly those triggered at cardiomyocyte level, are unknown. METHODS: We examined intracellular Ca2+ dynamics in adult ventricular cardiomyocytes isolated from C57BL/6 mice 7 or 15 days following unilateral renal I/R. RESULTS: After 7 days of I/R, the cell contraction was significantly lower in cardiomyocytes compared to sham-treated mice. It was accompanied by a significant decrease in both systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transients decay. Moreover, the incidence of pro-arrhythmic events, measured as the number of Ca2+ sparks, waves or automatic Ca2+ transients, was greater in cardiomyocytes from mice 7 days after I/R than from sham-treated mice. Ca2+ mishandling related to systolic Ca2+ transients and contraction were recovered to sham values 15 days after I/R, but Ca2+ sparks frequency and arrhythmic events remained elevated. CONCLUSIONS: Renal I/R injury causes a cardiomyocyte Ca2+ cycle dysfunction at medium (contraction-relaxation dysfunction) and long term (Ca2+ leak), after 7 and 15 days of renal reperfusion, respectively.


Assuntos
Injúria Renal Aguda/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Cálcio da Dieta/metabolismo , Retículo Endoplasmático/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Reperfusão/métodos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
18.
Virology ; 562: 190-196, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365094

RESUMO

Preserving morphological features that are important for cell function and structure is a critical parameter for in vitro experiments with rat cardiomyocytes. Lentiviral vectors are commonly used as gene transfer tool because of its high flexibility, efficiency to deliver expression cassettes and versatility of transducing quiescent cells. The tropism of the recombinant viral particle can be determined depending on the virus envelope, which shows a specific binding to cell surface receptors on the target cell. The combination of promoter arrangement and viral envelope must be optimized to achieve a greater transduction efficiency and a higher transgene expression. In this study we explored the optimization of promoters and heterologous envelopes to transduce primary culture of neonatal rat ventricular myocytes. Our results suggest a robust expression driven by the cytomegalovirus promoter, and high efficiency transduction mediated by VSV-G envelope with no apparent compromising ultrastructural features of genetically modified cells.


Assuntos
Lentivirus/genética , Miócitos Cardíacos/citologia , Transdução Genética/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Citomegalovirus/genética , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glicoproteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Ratos , Sarcômeros/ultraestrutura , Transgenes , Proteínas do Envelope Viral/genética , Pseudotipagem Viral
19.
FASEB J ; 35(8): e21796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324238

RESUMO

Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.


Assuntos
Proteína Forkhead Box O1/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Animais Recém-Nascidos , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA