Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 140168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714479

RESUMO

It is well-documented that carbonyl compounds have adverse effects on human health. On the other hand, these oxygenated volatile organic compounds (OVOCs) are precursors of secondary pollutants such as tropospheric ozone or peroxy acetyl nitrate (PAN). In particular, formaldehyde, the simplest carbonyl, is the most abundant carbonyl in the air generated from the degradation of most volatile organic compounds (VOCs). This work presents for the first time the characterization and determination of levels of carbonyl compounds by passive monitoring performed from April-December 2021 in the city of Córdoba, Argentina, the second most populated Mediterranean city located in the center of the country. Annual concentrations, considering the 11 carbonyls measured, were in the range of 0.13-8.75 µgm-3. Formaldehyde and acetaldehyde were the carbonyls detected in the highest annual average concentrations of 4.44 ± 1.75 µgm-3 and 3.85 ± 1.44 µgm-3, respectively. These carbonyls represent a contribution of around 40-57% on total carbonyls measured. Statistical analysis to determine significant differences and Pearson correlations with the meteorological parameters were performed. Spring and summer were found to be the seasons with the highest carbonyl concentration linked to forest fire episodes, especially in springtime. The values for the C1/C2 and C2/C3 ratios showed that sources of carbonyl formation are anthropogenic. In addition, the prop-Equiv concentration was determined, where formaldehyde and acetaldehyde were the main producers of tropospheric ozone. The ozone formation potential (OFP) showed that spring and summer are the seasons where carbonyls contribute to the formation of tropospheric ozone.This study represents a first approach of the carbonyl concentration in the city and of the influence of meteorological parameters on the behavior of carbonyls.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Argentina , Monitoramento Ambiental , Formaldeído/análise , Acetaldeído/análise , Ozônio/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA