Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Oncol ; 41(7): 176, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879707

RESUMO

Asparagine is a non-essential amino acid crucial for protein biosynthesis and function, and therefore cell maintenance and growth. Furthermore, this amino acid has an important role in regulating several metabolic pathways, such as tricarboxylic acid cycle and the urea cycle. When compared to normal cells, tumor cells typically present a higher demand for asparagine, making it a compelling target for therapy. In this review article, we investigate different facets of asparagine bioavailability intricate role in malignant tumors raised from solid organs. We take a comprehensive look at asparagine synthetase expression and regulation in cancer, including the impact on tumor growth and metastasis. Moreover, we explore asparagine depletion through L-asparaginase as a potential therapeutic method for aggressive solid tumors, approaching different formulations of the enzyme and combinatory therapies. In summary, here we delve into studies about endogenous and exogenous asparagine availability in solid cancers, analyzing therapeutic implications and future challenges.


Assuntos
Asparagina , Aspartato-Amônia Ligase , Neoplasias , Humanos , Asparagina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Aspartato-Amônia Ligase/metabolismo , Aspartato-Amônia Ligase/genética , Asparaginase/uso terapêutico , Animais
2.
Eur J Pharmacol ; 966: 176328, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237714

RESUMO

In 2020, breast cancer (BC) has surpassed lung cancer as the most diagnosed cancer in the world. Tumor microenvironment (TME) plays a critical role in resistance to standard therapies and tumor progression. Two key factors within the TME include adenosine, an immunosuppressive molecule, and glucose, which serves as the primary energy source for tumor cells. In this scenario, inhibiting the purinergic pathway and glucose uptake might be a promising strategy. Therefore, we sought to evaluated different treatment approaches in BC cells (Dapagliflozin, a SGLT2 inhibitor; Paclitaxel, the standard chemotherapy for BC; and ARL67156/APCP, inhibitors of CD39 and CD73, respectively). The expression of some membrane markers relevant to resistance was assessed. BC cell-lines (MCF-7 and MDA-MB-231) were co-treated and cell viability, cell cycle, and annexin/PI assays were performed. Our analysis showed promising results, where the combination of these compounds led to cell death by apoptosis/necrosis and cell cycle arrest. Dapagliflozin showed more impact on early apoptosis, whereas Paclitaxel led to late apoptosis/necrosis as the main mechanism of cell death. Inhibiting purinergic signaling also contributed to reducing cell viability together with the other drugs, suggesting it could have an influence on breast cancer survival mechanisms. Indeed, the overexpression of the NT5E gene in patients with ER+ tumors is strongly associated with reduced overall survival and progression-free interval. However, more studies are needed to fully understand the interactions and mechanism underlying these co-treatment multi-targeting approaches.


Assuntos
Compostos Benzidrílicos , Neoplasias da Mama , Glucosídeos , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Apoptose , Necrose , Proliferação de Células , Microambiente Tumoral
3.
Front Oncol ; 13: 1167484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056333
5.
Chem Biol Drug Des ; 99(6): 944-956, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322534

RESUMO

Cancer is one of the main causes of death in the world. This is a complex disease where the development of resistance to chemotherapy is frequent driving the search for new anticancer compounds. In this sense, isoquinolines have gained attention in the past few years. This review aims to highlight the new advances related to the use of isoquinolines compounds against cancer cells, and we point out targets for their anti-tumor action. Isoquinolines are compounds found in plants that are important for their protection. In cancer, many representatives of this class of compounds have demonstrated their efficacy against cancer by acting on cancer metabolism, such as triggering cell death, reducing pro-survival protein expression, inducing ROS production, inhibiting pro-survival cell signaling pathways, among other effects. The mechanisms triggered by isoquinolines in cancer cells represent robust anticancer strategies, which support that this class of compounds are strong candidates for cancer treatment.


Assuntos
Alcaloides , Neoplasias , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Morte Celular , Humanos , Isoquinolinas/farmacologia , Neoplasias/tratamento farmacológico
6.
Cancers (Basel) ; 14(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053598

RESUMO

The prevalence of obesity and type 2 diabetes is higher in French Guiana compared to mainland France. These metabolic disorders are associated with an increased risk of cancer. One of the factors involved is hyperinsulinemia that promotes the action of glucose transporter 1 (GLUT-1). The objective of this study is to characterize the expression of GLUT-1 in breast cancers cells in diabetic and obese patients compared to those who are not and to describe the clinical and histological prognostic factors of breast cancer in this population. We conducted a monocentric study including patients with breast cancer diagnosed between 2014 and 2020. Patients were classified into three groups: diabetes, obesity, and control group. The GLUT-1 expression was assessed by immunohistochemistry. In total, 199 patients were included in this study. The median age was 53.5 years, and the median tumor size was 2.8 cm. Luminal A was the most frequent molecular type (58.1%), followed by the triple-negative type (19.9%). The breast cancer in our population was characterized by a younger age at diagnosis, more aggressive molecular types, and larger tumor size. Thus, we suggest the advancement of the age of breast cancer screening in this territory. A total of 144 patients (31 diabetes, 22 obese, and 91 control group) were included for the study of GLUT-1 expression. Overexpression of GLUT-1 was observed in 60.4% of cases and in all carcinoma in situ lesions. GLUT-1 overexpression was associated with more aggressive cancers. This overexpression is correlated with high histological grade, high proliferation index, and aggressive molecular types. Our study found no difference in GLUT-1 expression between the diabetic or obese patients and the control group. These results highlight the potential role of GLUT-1 as a tumor metabolic prognostic marker and also as an interesting target therapy, independently of patient metabolic disorder.

7.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208670

RESUMO

Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.

8.
Trends Endocrinol Metab ; 32(4): 198-211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33518451

RESUMO

Cancer cells increase their metabolic activity by enhancing glucose uptake through overexpression of hexose transporters (Gluts). Gluts also have the capacity to transport other molecules besides glucose, including fructose, mannose, and dehydroascorbic acid (DHA), the oxidized form of vitamin C. The majority of research studies in this field have focused on the role of glucose transport and metabolism in cancer, leaving a substantial gap in our knowledge of the contribution of other hexoses and DHA in cancer biology. Here, we summarize the most recent advances in understanding the role that the multifunctional transport capacity of Gluts plays in biological and clinical aspects of cancer, and how these characteristics can be exploited in the search for novel diagnostic and therapeutic strategies.


Assuntos
Proteínas de Transporte de Monossacarídeos , Neoplasias , Ácido Ascórbico , Transporte Biológico , Ácido Desidroascórbico , Glucose/metabolismo , Hexoses/metabolismo , Humanos , Proteínas de Transporte de Monossacarídeos/metabolismo , Neoplasias/diagnóstico , Neoplasias/terapia
9.
Methods Mol Biol ; 2174: 45-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813244

RESUMO

Colon cancer is a highly anabolic entity with upregulation of glycolysis, glutaminolysis, and de novo synthesis of fatty acids, which also induces a hypercatabolic state in the patient. The blockade of either cancer anabolism or host catabolism has been previously proven to be a successful anticancer experimental treatment. However, it is still unclear whether the simultaneous blockade of both metabolic counterparts can limit malignant survival and the energetic consequences of such an approach. In this chapter, by using the CT26.WT murine colon adenocarcinoma cell line as a model of study, we provide a method to simultaneously perform a pharmacological blockade of tumor anabolism and host catabolism, as a feasible therapeutic approach to treat cancer, and to limit its energetic supply.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Diazo-Oxo-Norleucina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Indazóis/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Orlistate/administração & dosagem , Smegmamorpha
10.
Biochem Cell Biol ; 99(4): 447-456, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33342359

RESUMO

Mitochondria modify their function and morphology to satisfy the bioenergetic demand of the cells. Cancer cells take advantage of these features to sustain their metabolic, proliferative, metastatic, and survival necessities. Understanding the morphological changes to mitochondria in the different grades of triple-negative breast cancer (TNBC) could help to design new treatments. Consequently, this research explored mitochondrial morphology and the gene expression of some proteins related to mitochondrial dynamics, as well as proteins associated with oxidative and non-oxidative metabolism in metastatic and non-metastatic TNBC. We found that mitochondrial morphology and metabolism are different in metastatic and non-metastatic TNBC. In metastatic TNBC, there is overexpression of genes related to mitochondrial dynamics, fatty-acid metabolism, and glycolysis. These features are accompanied by a fused mitochondrial morphology. By comparison, in non-metastatic TNBC, there is a stress-associated mitochondrial morphology with hyperfragmented mitochondria, accompanied by the upregulated expression of genes associated with the biogenesis of mitochondria; both of which are characteristics related to the higher production of reactive oxygen species observed in this cell line. These differences between metastatic and non-metastatic TNBC should provide a better understanding of metastasis and contribute to the development of improved specific and personalized therapies for TNBC.


Assuntos
Glicólise , Lipogênese , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/secundário , Metabolismo Energético , Transição Epitelial-Mesenquimal , Humanos , Mitocôndrias/metabolismo , Oxirredução , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas
11.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217901

RESUMO

Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.


Assuntos
Antineoplásicos , Portadores de Fármacos , Glicólise/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias , Fosforilação Oxidativa/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Tolerância a Radiação/efeitos dos fármacos
12.
Front Oncol ; 10: 1123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754444

RESUMO

NUAK1 is an AMPK-related kinase located in the cytosol and the nucleus, whose expression associates with tumor malignancy and poor patient prognosis in several cancers. Accordingly, NUAK1 was associated with metastasis because it promotes cell migration and invasion in different cancer cells. Besides, NUAK1 supports cancer cell survival under metabolic stress and maintains ATP levels in hepatocarcinoma cells, suggesting a role in energy metabolism in cancer. However, the underlying mechanism for this metabolic function, as well as its link to NUAK1 subcellular localization, is unclear. We demonstrated that cytosolic NUAK1 increases ATP levels, which associates with increased mitochondrial respiration, supporting that cytosolic NUAK1 is involved in mitochondrial function regulation in cancer cells. NUAK1 inhibition led to the formation of "donut-like" structures, providing evidence of NUAK1-dependent mitochondrial morphology regulation. Additionally, our results indicated that cytosolic NUAK1 increases the glycolytic capacity of cancer cells under mitochondrial inhibition. Nuclear NUAK1 seems to be involved in the metabolic switch to glycolysis. Altogether, our results suggest that cytosolic NUAK1 participates in mitochondrial ATP production and the maintenance of proper glycolysis in cancer cells. Our current studies support the role of NUAK1 in bioenergetics, mitochondrial homeostasis, glycolysis and metabolic capacities. They suggest different metabolic outcomes depending on its subcellular localization. The identified roles of NUAK1 in cancer metabolism provide a potential mechanism relevant for tumor progression and its association with poor patient prognosis in several cancers. Further studies could shed light on the molecular mechanisms involved in the identified metabolic NUAK1 functions.

13.
Front Oncol ; 10: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117749

RESUMO

Metabolic deregulation is an emergent hallmark of cancer. Altered patterns of metabolic pathways result in exacerbated synthesis of macromolecules, increased proliferation, and resistance to treatment via alteration of drug processing. In addition, molecular heterogeneity creates a barrier to therapeutic options. In breast cancer, this broad variation in molecular metabolism constitutes, simultaneously, a source of prognostic and therapeutic challenges and a doorway to novel interventions. In this work, we investigated the metabolic deregulation landscapes in breast cancer molecular subtypes. Such landscapes are the regulatory signatures behind subtype-specific metabolic features. n = 735 breast cancer samples of the Luminal A, Luminal B, Her2+, and Basal subtypes, as well as n = 113 healthy breast tissue samples were analyzed. By means of a single-sample-based algorithm, deregulation for all metabolic pathways in every sample was determined. Deregulation levels match almost perfectly with the molecular classification, indicating that metabolic anomalies are closely associated with gene-expression signatures. Luminal B tumors are the most deregulated but are also the ones with higher within-subtype variance. We argued that this variation may underlie the fact that Luminal B tumors usually present the worst prognosis, a high rate of recurrence, and the lowest response to treatment in the long term. Finally, we designed a therapeutic scheme to regulate purine metabolism in breast cancer, independently of the molecular subtype. This scheme is founded on a computational tool that provides a set of FDA-approved drugs to target pathway-specific differentially expressed genes. By providing metabolic deregulation patterns at the single-sample level in breast cancer subtypes, we have been able to further characterize tumor behavior. This approach, together with targeted therapy, may open novel avenues for the design of personalized diagnostic, prognostic, and therapeutic strategies.

14.
Anal Biochem ; 597: 113666, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32142760

RESUMO

Metabolomic studies are essential to identify and quantify key metabolites in biological systems. Analysis of amino acids (AA) is very important in target metabolomics studies. Chromatographic methods are used to support metabolite determinations. Therefore, this work presents analysis of 17 AA in Saccharomyces cerevisiae cells (a useful model in the study of cancer metabolism) exposed to sodium selenite and gamma radiation. An improved GC/MS method using propyl chloroformate/propanol as derivatizing reagent was applied to AA determinations. The method exhibited good linearity in the range of 0.08-600.00 mg L-1; limits of determination from 0.04 to 1.60 mg L-1; limits of quantification from 0.08 to 2.76 mg L-1; repeatability ranging from 1.9 to 11.4 %; and precision ranging from 2.8 to 13.8 %. The correlations between selenite/gamma radiation with AA profile was investigated to establish candidates for cancer biomarkers. The analyses of yeast cultures found high concentrations of amino acids, such as Alanine, Serine, Glutamate, and Lysine, which might be associated with the development of metabolic adaptations of cancer based on its high demand for biomass and energy, found both in this model and neoplastic cells.


Assuntos
Aminoácidos/metabolismo , Raios gama , Metabolômica , Saccharomyces cerevisiae/metabolismo , Selênio/química , Aminoácidos/análise , Saccharomyces cerevisiae/citologia , Selênio/metabolismo
15.
Cancers (Basel) ; 12(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947710

RESUMO

A central characteristic of many types of cancer is altered energy metabolism processes such as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation. STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial activity. It seems that STAT proteins function as an integrative centre for different growth and survival signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that are involved in energy production in cancer cells.

16.
Front Oncol ; 10: 582396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425736

RESUMO

During tumor progression, cancer cells rewire their metabolism to face their bioenergetic demands. In recent years, microRNAs (miRNAs) have emerged as regulatory elements that inhibit the translation and stability of crucial mRNAs, some of them causing direct metabolic alterations in cancer. In this study, we investigated the relationship between miRNAs and their targets mRNAs that control metabolism, and how this fine-tuned regulation is diversified depending on the tumor stage. To do so, we implemented a paired analysis of RNA-seq and small RNA-seq in a breast cancer cell line (MCF7). The cell line was cultured in multicellular tumor spheroid (MCTS) and monoculture conditions. For MCTS, we selected two-time points during their development to recapitulate a proliferative and quiescent stage and contrast their miRNA and mRNA expression patterns associated with metabolism. As a result, we identified a set of new direct putative regulatory interactions between miRNAs and metabolic mRNAs representative for proliferative and quiescent stages. Notably, our study allows us to suggest that miR-3143 regulates the carbon metabolism by targeting hexokinase-2. Also, we found that the overexpression of several miRNAs could directly overturn the expression of mRNAs that control glycerophospholipid and N-Glycan metabolism. While this set of miRNAs downregulates their expression in the quiescent stage, the same set is upregulated in proliferative stages. This last finding suggests an additional metabolic switch of the above mentioned metabolic pathways between the quiescent and proliferative stages. Our results contribute to a better understanding of how miRNAs modulate the metabolic landscape in breast cancer MCTS, which eventually will help to design new strategies to mitigate cancer phenotype.

17.
Oncol Lett ; 18(6): 6909-6916, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788130

RESUMO

Lonidamine, 6-Diazo-5-oxo-L-norleucine (DON) and orlistat are well known inhibitors of glycolysis, glutaminolysis and of de novo fatty acid synthesis, respectively. Although their antitumor effects have been explored in detail, the potential inhibition of the malignant metabolic phenotype and its influence on the expression of chemokines and growth factors involved in colon cancer, have not been previously reported to the best of our knowledge. In the present study, dose-response curves with orlistat, lonidamine or DON were generated from cell viability assays conducted in SW480 colon cancer cells. In addition, the synergistic effect of these compounds was evaluated in SW480 human colon cancer cells. The determination of the doses used for maximum synergistic efficacy led to the exploration of the mRNA levels of the target genes hexokinase-2 (HK2), glutaminase-1 (GLS-1) and fatty acid synthase (FASN) in human SW480 and murine CT26.WT colon cancer cells. The cell viability was evaluated following transfection with small interfering (si)RNA targeting these genes and was assessed with trypan blue. The expression levels of chemokines and growth factors were quantified in the supernatant of SW480 cells with LEGENDplex™. The combination of lonidamine, DON and orlistat resulted in a synergistic cytotoxic effect and induced the transcription of the corresponding gene targets but their corresponding proteins were actually downregulated. The downregulation of the expression levels of HK2, GLS-1 and FASN following transfection of the cells with the corresponding siRNA sequences decreased their viability. The treatment significantly reduced the expression levels of 9 chemokines [interleukin-9, C-X-C motif chemokine ligand (CXCL) 10, eotaxin, chemokine ligand (CCL) 9, CXCL5, CCL20, CXCL1, CXCL11 and CCCL4] and one growth factor (stem cell factor). These changes were associated with decreased phosphorylated-nuclear factor κB-p65. The data demonstrate that lonidamine, DON and orlistat in combination reduce the expression levels of chemokines and growth factors in colon cancer cells. Additional research is required to investigate the exact way by which both tumor and stromal cells regulate the expression levels of chemokines and growth factors.

18.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324056

RESUMO

An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Resveratrol/farmacologia , Animais , Humanos
19.
Curr Pathobiol Rep ; 7(3): 97-108, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37092138

RESUMO

Purpose of the Review: We present an overview of recent advances in positron emission tomography (PET) diagnostics as applied to the study of cancer, specifically as a tool to study in vivo cancer biology and to direct targeted cancer therapy. The review is directed to translational and clinical cancer investigators who may not be familiar with these applications of PET cancer diagnostics, but whose research might benefit from these advancing tools. Recent Findings: We highlight recent advances in 3 areas: (1) the translation of PET imaging cancer biomarkers to clinical trials; (2) methods for measuring cancer metabolism in vivo in patients; and (3) advances in PET instrumentation, including total-body PET, that enable new methodologies. We emphasize approaches that have been translated to human studies. Summary: PET imaging methodology enables unique in vivo cancer diagnostics that go beyond cancer detection and staging, providing an improved ability to guide cancer treatment and an increased understanding of in vivo human cancer biology.

20.
Oncol Lett ; 13(3): 1905-1910, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28454342

RESUMO

The aim of the present study was to investigate in vivo the feasibility and efficacy of the combination of lonidamine (LND), 6-diazo-5-oxo-L-norleucine (DON) and orlistat to simultaneously target glycolysis, glutaminolysis and de novo synthesis of fatty acids, respectively. The doses of LND and DON used in humans were translated to mouse doses (77.7 mg/kg and 145.5 mg/kg, respectively) and orlistat was used at 240 mg/kg. Three schedules of LND, DON and orlistat at different doses were administered by intraperitoneal injection to BALB/c mice in a 21-day cycle (schedule 1: LND, 0.5 mg/day; DON, 0.25 mg/day 1, 5 and 9; orlistat, 240 mg/kg/day; schedule 2: LND, 0.1 mg/day; DON, 0.5 mg/day 1, 5 and 9; orlistat, 240 mg/kg/day; schedule 3: LND, 0.5 mg/day; DON, 0.08 mg/day 1, 5 and 9; orlistat, 360 mg/kg/day) to assess tolerability. To determine the antitumor efficacy, a syngeneic tumor model in BALB/c mice was created using colon cancer CT26.WT cells, and a xenogeneic tumor model was created in nude mice using the human colon cancer SW480 cell line. Mice were treated with schedule 1. Animals were weighed, clinically inspected during the experiment and the tumor volume was measured at day 21. The 3 schedules assessed in the tolerability experiments were well tolerated, as mice maintained their weight and no evident clinical signs of toxicity were observed. Combination treatment with schedule 1 significantly decreased tumor growth in each mouse model. No evident signs of toxicity were observed and mice maintained their weight during treatment. The triple metabolic blockade of the malignant phenotype appears feasible and promising for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA