Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(10): 633, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490544

RESUMO

Diagnostic ratios and compound-specific isotopic analysis (CSIA) are two tools that can help identify and differentiate the petrogenic and biogenic sources of hydrocarbons found in environmental samples. The present study aims to evaluate the concentration and type of n-alkanes and isoprenoids found in the oligotrophic waters of the Gulf of Mexico (n = 14), and through the typical diagnostic ratios reported for n-alkanes and its carbon isotopic composition (δ13C) to establish and differentiate the possible source of the hydrocarbons. Additionally, crude oil samples (n = 10) extracted in the Gulf of Mexico were evaluated by CSIA as a possible source of hydrocarbons to the study area. We found that the CSIA of δ13C for n-alkanes (n-C11 to n-C30) and isoprenoids (pristane and phytane) found in the surface water samples varied from - 25.55 to - 37.59‰ and from - 23.78 to - 33.97‰ in the crude oil samples, values which are more related to petrogenic sources. An analysis of the δ13C for pristane vs. phytane suggests that only three surface water samples show an origin in common that those observed in crude oils of the Gulf of Mexico. A low incidence of odd- and even-numbered n-alkanes higher than n-C25 in the water samples indicate low to negligible presence of terrigenous sources into the area, which was supported by the carbon isotopic composition of the individual n-alkanes.


Assuntos
Petróleo , Poluentes Químicos da Água , Alcanos/análise , Isótopos de Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos , Golfo do México , Petróleo/análise , Terpenos , Poluentes Químicos da Água/análise
2.
J Contam Hydrol ; 234: 103684, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32711211

RESUMO

Release of benzene, toluene, ethylbenzene, and xylene (BTEX) as components of the light non-aqueous phase liquids (LNAPL) contaminates soil and groundwater. Assessing the mechanisms of degradation and mineralization of BTEX in groundwater helps understand the migration of the dissolved plume, enabling the reduction of risks to humans. Here, we studied the fate of ethylbezene, m,p-xylenes and o-xylenes and the accompanying formation of methane in a Cenozoic lateritic aquifer in Brazil by compound-specific carbon stable isotope analysis (CSIA), to gain insights into the complex dynamics of release and biodegradation of BTEX in the LNAPL source zone. The enrichment of ∂13C in aromatic compounds dissolved in groundwater compared to the corresponding compounds in LNAPL indicate that CSIA can provide valuable information regarding biodegradation. The isotopic analysis of methane provides direct indication of oxidation mediated by aquifer oxygenation. The ∂13C-CO2 values indicate methanogenesis prevailing at the border and aerobic biodegradation in the center of the LNAPL source zone. Importantly, the isotopic results allowed major improvements in the previously developed conceptual model, supporting the existence of oxic and anoxic environments within the LNAPL source zone.


Assuntos
Poluentes Químicos da Água , Benzeno/análise , Derivados de Benzeno/análise , Biodegradação Ambiental , Brasil , Humanos , Hidrocarbonetos , Tolueno , Poluentes Químicos da Água/análise , Xilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA