Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Life ; 16(7): 1017-1021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900065

RESUMO

In this retrospective study, we aimed to evaluate the effects of the neurotrophic compound Cerebrolysin on executive, cognitive, and functional performance in patients with traumatic brain injury (TBI) with a highly severe disability level. A total of 44 patients were included in the study, with 33 patients in the control group and 11 patients in the interventional group who received intravenous infusions of 30 mL Cerebrolysin. Both groups received standard rehabilitation therapy following the rehabilitation protocol for patients with TBI at Hospital Clínico Mutual de Seguridad. Functional and cognitive scales were evaluated at baseline, at four months, and at the endpoint of the intervention therapy at seven months (on average). The results revealed a significant improvement in the Cerebrolysin-treated group compared to the control group. Specifically, patients who received Cerebrolysin showed a moderate residual disability and a significant reduction in the need for care. Concerning the promising results and considering the limitations of the retrospective study design, we suggest that randomized controlled studies be initiated to corroborate the positive findings for Cerebrolysin in patients with moderate to severe brain trauma.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Estudos Retrospectivos , Lesões Encefálicas/reabilitação , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Recuperação de Função Fisiológica
3.
Saudi Dent J ; 34(7): 538-543, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267531

RESUMO

Objectives: Occlusal function stimulates different areas of the cerebral cortex. The purpose of this narrative review was to identify the relationship between occlusion and brain activity so as to provide theoretical support to enable future studies on the subject. Study selection data and sources: Relevant case-control studies, clinical trials, and systematic reviews available in English were retrieved from the following databases: MEDLINE, PubMed, ScienceDirect, Wiley Online Library, and Biblioteca Virtual en Salud (BVS). Of the 53 articles obtained, 12 were included. Conclusion: The sensorimotor cortex is affected by changes in occlusion. It is speculated that occlusion could play an important role in the development of diseases, from anxiety and stress to Alzheimer's disease and senile dementia. Further investigations into the interactions between occlusion and brain function are needed to elucidate the parts of the brain that are affected when occlusion is disturbed and to determine whether brain function is altered. Clinical significance: Dentists must consider that alterations in the occlusal pattern during mastication can lead to changes in the activation of different brain regions related to memory, learning, anticipatory pain, and anxiety. This suggests that mastication maintains the integrity of certain brain areas and that it may be a key factor in the onset of neurodegenerative diseases.

4.
J Otol ; 17(4): 232-238, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249923

RESUMO

Objective: To determine the circadian influence on sound sensitivity produced by temporal hearing deprivation in healthy normal human subjects. Design: Participants underwent bilateral earplugging before completion of anthropometry, the author's developed questionnaire, the Hamilton Anxiety and Depression Inventory, pure tone audiometry (PTA), stapedial reflex thresholds (SRT), distortion products otoacoustic emissions input/output (DPOAE-I/O), and uncomfortable loudness levels (ULLs). Afterward, the participants were randomly divided into group A, starting at 8:00 a.m. and finishing at 8:00 p.m., and group B, starting at 4:00 p.m. and ending at 4:00 a.m. Serum cortisol levels and audiological test results were obtained at the beginning and end of the session and 24-h free urinary cortisol levels were measured. Study sample: Thirty healthy volunteers. Results: PTA was 2.68 and 3.33 dB HL in groups A and B, respectively, with no statistical difference between them. ULLs were significantly lower in group A compared to group B, with an average of 8.1 dB SPL in group A and 3.3 dB SPL in group B (p < 0.0001). A SRT shift was observed in group A, with no difference in group B, and a night shift in DPOAE-I/O in group B. Conclusions: Reduced loudness tolerance is demonstrated during daytime hearing deprivation in contrast to nighttime; this may be due to increased central gain in the awake cortex.

5.
eNeurologicalSci ; 28: 100419, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935176

RESUMO

Introduction: Neurological manifestations have been associated with a poorer prognosis in COVID-19. However, data regarding their incidence according to sex and age groups is still lacking. Methods: This retrospective multicentric cohort collected data from 39 Brazilian hospitals from 17 cities, from adult COVID-19 admitted from March 2020 to January 2022. Neurological manifestations presented at hospital admission were assessed according to incidence by sex and age group. Results: From 13,603 COVID-19 patients, median age was 60 years old and 53.0% were men. Women were more likely to present with headaches (22.4% vs. 17.7%, p < 0.001; OR 1.36, 95% confidence interval [CI] 1.22-1.52) than men and also presented a lower risk of having seizures (OR 0.43, 95% CI 0.20-0.94). Although delirium was more frequent in women (6.6% vs. 5.7%, p = 0.020), sex was not associated with delirium in the multivariable logistc regresssion analysis. Delirium, syncope and coma increased with age (1.5% [18-39 years] vs. 22.4% [80 years or over], p < 0.001, OR 1.07, 95% CI 1.06-1.07; 0.7% vs. 1.7%, p = 0.002, OR 1.01, 95% CI 1.00-1.02; 0.2% vs. 1.3% p < 0.001, OR 1.04, 95% CI 1.02-1.06), while, headache (26.5% vs. 7.1%, OR 0.98, 95% CI 0.98-0.99), anosmia (11.4% vs. 3.3%, OR 0.99, 95% CI] 0.98-0.99 and ageusia (13.1% vs. 3.5%, OR 0.99, CI 0.98-0.99) decreased (p < 0.001 for all). Conclusion: Older COVID-19 patients were more likely to present delirium, syncope and coma, while the incidence of anosmia, ageusia and headaches decreased with age. Women were more likely to present headache, and less likely to present seizures.

6.
J Tradit Complement Med ; 12(2): 115-122, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35528470

RESUMO

Background and aim: This study investigated the effect of Kava extract (Piper methysticum), a medicinal plant that has been worldly used by its anxiolytic effects, on monoamine oxidase (MAO) activity of mice brain after 21 days of treatment as well as anxiolytic and locomotor behavior. Furthermore, the in vitro inhibitory profile of Kava extract on MAO-B activity of mouse brain was evaluated. Experimental procedure: Mice were treated with Kava extract (10, 40, 100 and 400 mg/kg) for 21 days by gavage. After behavioral analysis (plus maze test and open field), MAO activity in different mouse brain structures (cortex, hippocampus, region containing the substantia nigra and striatum) were performed. MAO-B inhibitory profile was characterized in vitro. Results: The treatment with Kava extract (40 mg/kg) increased the percentage of entries of mice into the open arms. Ex vivo analysis showed an inhibition on MAO-B activity caused by Kava extract in cortex (10 mg/kg) and in the region containing the substantia nigra (10 and 100 mg/kg). In vitro, Kava extract also reversibly inhibited MAO-B activity with IC50 = 14.62 µg/mL and, increased Km values at the concentrations of 10 and 30 µg/mL and decreased Vmax value at 100 µg/mL. Conclusion: Kava extract showed different effects on MAO-B isoform depending on the brain structure evaluated. Therefore, the use of Kava extract could be promissory in pathologies where MAO-B is the pharmacological target.

7.
JAAD Int ; 6: 51-58, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059659

RESUMO

INTRODUCTION: Balamuthia mandrillaris, a free-living amoeba, causes an uncommon infection that is characterized by cutaneous and neurological involvement, which carries a poor prognosis. METHODS: This is a retrospective observational study including patients with clinical suspicion of cutaneous balamuthiasis, their skin biopsies, and/or a positive direct immunofluorescence test. The data were collected from the Dermatology and Pathology service of the Hospital Cayetano Heredia and the Instituto Tropical Alexander von Humboldt, Lima, Peru, from January 1985 to June 2007. We identified 60 biopsies from 35 patients, from which clinical data were available in 30. RESULTS: Twenty-two (73%) patients had centrofacial lesions, mostly located on the nose. The classical lesion was an asymptomatic, erythematous, or violaceous infiltrated plaque. Twenty-two (73%) patients had neurologic involvement. Fifty (83%) biopsies showed granulomatous dermatitis and 75% showed ill-defined tuberculoid granulomas without caseous necrosis. Multinucleated giant cells were observed in 52 (87%) biopsies. Trophozoite forms were identified in the biopsies of 25 (71%) patients. Direct immunofluorescence was positive in 25 (71%) patients. CONCLUSION: B. mandrillaris is a pathogen that is capable of inducing a characteristic skin lesion with a reaction pattern of ill-defined tuberculoid granulomas and many giant cells.

8.
Toxicol Rep ; 8: 829-838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868963

RESUMO

The biological and pharmacological properties of natural polyphenols of the extract of Euterpe oleracea stone (EEOS) are associated with the central nervous system (CNS). To investigate the sedative and myorelaxant activity of EEOS in vivo, this study aimed to present the myorelaxant and sedative effects of EEOS in Wistar rats using spontaneous locomotor activity and motor electrophysiology. A total of 108 animals were used in the following experiments: a) behavioral tests (n = 27); b) electromyographic recordings of skeletal muscle (n = 27); c) respiratory muscle activity recordings (n = 27); d) cardiac muscle activity recordings (n = 27). The behavioral characteristics were measured according to the latency time of onset, the transient loss of posture reflex and maximum muscle relaxation. Electrodes were implanted in the gastrocnemius muscle and in the tenth intercostal space for electromyographic (EMG) signal capture to record muscle contraction, and in the D2 lead for electrocardiogram acquisition. After using the 300 mg/kg dose of EEOS intraperitoneally, a myorelaxant activity exhibited a lower frequency of contractility with an amplitude pattern of low and short duration at gastrocnemius muscle and intercostal muscle, which clearly describes a myorelaxant activity and changes in cardiac activity. The present report is so far the first study to demonstrate the myorelaxant activity of this extract, indicating an alternative route for açai stone valorization and its application in pharmaceutical fields.

10.
Curr Res Insect Sci ; 1: 100014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36003598

RESUMO

Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.

11.
World Allergy Organ J ; 13(11): 100476, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33072240

RESUMO

INTRODUCTION: In light of the current COVID-19 pandemic, during which the world is confronted with a new, highly contagious virus that suppresses innate immunity as one of its initial virulence mechanisms, thus escaping from first-line human defense mechanisms, enhancing innate immunity seems a good preventive strategy. METHODS: Without the intention to write an official systematic review, but more to give an overview of possible strategies, in this review article we discuss several interventions that might stimulate innate immunity and thus our defense against (viral) respiratory tract infections. Some of these interventions can also stimulate the adaptive T- and B-cell responses, but our main focus is on the innate part of immunity. We divide the reviewed interventions into: 1) lifestyle related (exercise, >7 h sleep, forest walking, meditation/mindfulness, vitamin supplementation); 2) Non-specific immune stimulants (letting fever advance, bacterial vaccines, probiotics, dialyzable leukocyte extract, pidotimod), and 3) specific vaccines with heterologous effect (BCG vaccine, mumps-measles-rubeola vaccine, etc). RESULTS: For each of these interventions we briefly comment on their definition, possible mechanisms and evidence of clinical efficacy or lack of it, especially focusing on respiratory tract infections, viral infections, and eventually a reduced mortality in severe respiratory infections in the intensive care unit. At the end, a summary table demonstrates the best trials supporting (or not) clinical evidence. CONCLUSION: Several interventions have some degree of evidence for enhancing the innate immune response and thus conveying possible benefit, but specific trials in COVID-19 should be conducted to support solid recommendations.

13.
Brain Behav Immun Health ; 2: 100034, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377429

RESUMO

Mental disorders (MDs) are highly prevalent and potentially debilitating complex disorders which causes remain elusive. Looking into deeper aspects of etiology or pathophysiology underlying these diseases would be highly beneficial, as the scarce knowledge in mechanistic and molecular pathways certainly represents an important limitation. Association between MDs and inflammation/neuroinflammation has been widely discussed and accepted by many, as high levels of pro-inflammatory cytokines were reported in patients with several MDs, such as schizophrenia (SCZ), bipolar disorder (BD) and major depression disorder (MDD), among others. Correlation of pro-inflammatory markers with symptoms intensity was also reported. However, the mechanisms underlying the inflammatory dysfunctions observed in MDs are not fully understood yet. In this context, microglial dysfunction has recently emerged as a possible pivotal player, as during the neuroinflammatory response, microglia can be over-activated, and excessive production of pro-inflammatory cytokines, which can modify the kynurenine and glutamate signaling, is reported. Moreover, microglial activation also results in increased astrocyte activity and consequent glutamate release, which are both toxic to the Central Nervous System (CNS). Also, as a result of increased microglial activation in MDs, products of the kynurenine pathway were shown to be changed, influencing then the dopaminergic, serotonergic, and glutamatergic signaling pathways. Therefore, in the present review, we aim to discuss how neuroinflammation impacts on glutamate and kynurenine signaling pathways, and how they can consequently influence the monoaminergic signaling. The consequent association with MDs main symptoms is also discussed. As such, this work aims to contribute to the field by providing insights into these alternative pathways and by shedding light on potential targets that could improve the strategies for pharmacological intervention and/or treatment protocols to combat the main pharmacologically unmatched symptoms of MDs, as the SCZ.

14.
Toxicol Rep ; 6: 616-624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316897

RESUMO

Fruit peels of Plinia cauliflora (Mart.) Kausel are widely used in Brazilian traditional medicine, but no studies have proved the safety of its pharmacological effects on the respiratory, cardiovascular, and central nervous systems. The present study assessed the safety pharmacology of P. cauliflora in New Zealand rabbits. First, an ethanol extract (EEPC) was selected for the pharmacological experiments and chemical characterization. Then, different groups of rabbits were orally treated with EEPC (200 and 2000 mg/kg) or vehicle. Acute behavioral and physiological alterations in the modified Irwin test, respiratory rate, arterial blood gas, and various cardiovascular parameters (i.e., heart rate, blood pressure, and electrocardiography) were evaluated. The main secondary metabolites that were identified in EEPC were ellagic acid, gallic acid, O-deoxyhexosyl quercetin, and the anthocyanin O-hexosyl cyanidin. No significant behavioral or physiological changes were observed in any of the groups. None of the doses of EEPC affected respiratory rate or arterial blood gas, with no changes on blood pressure or electrocardiographic parameters. The present study showed that EEPC did not cause any significant changes in respiratory, cardiovascular, or central nervous system function. These data provide scientific evidence of the effects of this species and important safety data for its clinical use.

15.
Egypt Heart J ; 70(4): 307-313, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30591748

RESUMO

BACKGROUND: The prospective, observational XANTUS study demonstrated low rates of stroke and major bleeding in real-world rivaroxaban-treated patients with non-valvular atrial fibrillation (NVAF) from Western Europe, Canada and Israel. XANTUS-EL is a component of the overall XANTUS programme and enrolled patients with NVAF treated with rivaroxaban from Eastern Europe, the Middle East and Africa (EEMEA) and Latin America. METHODS: Patients with NVAF starting rivaroxaban for stroke prevention were consecutively recruited and followed for 1 year, at approximately 3-month intervals, or for ≥30 days after permanent rivaroxaban discontinuation. Primary outcomes were major bleeding, adverse events (AEs), serious AEs and all-cause mortality. Secondary outcomes included stroke, non-central nervous system systemic embolism (non-CNS SE), transient ischaemic attack (TIA), myocardial infarction (MI) and non-major bleeding. All major outcomes were centrally adjudicated. RESULTS: Overall, 2064 patients were enrolled; mean age ±â€¯standard deviation was 67.1 ±â€¯11.32 years; 49.3% were male. Co-morbidities included heart failure (30.9%), hypertension (84.2%), diabetes mellitus (26.5%), prior stroke/non-CNS SE/TIA (16.2%) and prior MI (10.7%). Mean CHADS2, CHA2DS2-VASc and HAS-BLED scores were 2.0, 3.6 and 1.6, respectively. Treatment-emergent event rates were (events/100 patient-years, [95% confidence interval]): major bleeding 0.9 (0.5-1.4); all-cause mortality 1.7 (1.2-2.4); stroke/non-CNS SE 0.7 (0.4-1.2); any AE 18.1 (16.2-20.1) and any serious AE 8.3 (7.0-9.7). One-year treatment persistence was 81.9%. CONCLUSIONS: XANTUS-EL confirmed low stroke and major bleeding rates in patients with NVAF from EEMEA and Latin America. The population was younger but with more heart failure and hypertension than XANTUS; stroke/SE rate was similar but major bleeding lower.

16.
Neurol Res ; 39(7): 649-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28398193

RESUMO

OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.


Assuntos
Transtornos da Memória/metabolismo , Mitocôndrias/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Dilatação Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Escopolamina
17.
Neurol Res ; 39(1): 73-82, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27809706

RESUMO

Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.


Assuntos
Doenças Mitocondriais/etiologia , Doenças Neurodegenerativas/complicações , Estresse Oxidativo/fisiologia , Animais , Humanos
18.
Tissue Barriers ; 3(1-2): e978720, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838983

RESUMO

The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.

19.
FEBS Open Bio ; 3: 443-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251109

RESUMO

Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA