Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 26(11): 1320-1330, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38970613

RESUMO

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Matadoras Naturais/imunologia , Humanos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Antígenos CD19/imunologia , Proliferação de Células , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Citotoxicidade Imunológica
2.
Front Immunol ; 14: 1226518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818365

RESUMO

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Antígenos CD19 , Proliferação de Células
3.
Front Oncol ; 13: 1195759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711206

RESUMO

Peripheral T cell lymphoma (PTCL) is a rare and aggressive type of non-Hodgkin's lymphoma that affects mature T cells. This type of cancer is characterized by the abnormal growth of T cells, which can accumulate in the lymph nodes, spleen, bone marrow, and other organs, leading to a variety of symptoms. PTCLs are often difficult to diagnose and treat, and they have a poorer prognosis than other types of lymphoma. However, recent advancements in treatment options, such as targeted therapies have shown promise in improving outcomes for patients with PTCL. Here, we discuss the use of autologous and allogeneic hematopoietic cell transplantation (HCT) as a treatment strategy for patients with PTCL, as well as the recent treatment approaches based on advanced cellular therapy. The current evidence for the use of HCT in PTCL is mainly derived from registry data, retrospective studies, and expert opinion, as randomized trials are limited due to the low incidence and histological heterogeneity of PTCL subtypes.

4.
Cancers (Basel) ; 15(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37046648

RESUMO

Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.

5.
Anticancer Res ; 39(11): 5919-5925, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31704816

RESUMO

BACKGROUND/AIM: The aim of the current study was to investigate the synergistic efficacy of Robo1 bichimeric antigen receptor-natural killer cell (BiCAR-NK) immunotherapy and 125I seed brachytherapy in an orthotopic pancreatic cancer mouse model. MATERIALS AND METHODS: The orthotopic pancreatic tumor model was established with human pancreatic cancer BxPC-3 cells expressing red fluorescent protein. The mice were treated with 125I seed implantation alone or the combination of 125I seeds with Robo1-specific CAR-NK cells. To assess tumor inhibition, in vivo fluorescence imaging was conducted. 7 Tesla magnetic resonance (7T-MR) scanning was applied to measure the changes in the metabolic profiles of tumor tissues. RESULTS: Tumor size was significantly reduced in the 125I and 125I +CAR-NK treated group compared to the untreated group (p<0.05). The 125I seed +CAR-NK treated group showed significantly higher tumor reduction than 125I seed treatment alone (p<0.05). T1 diffusion weighted imaging (T1DWI) sequence showed that the tumors of the 125I +BiCAR-NK treated group had a significantly higher grey scale value than the tumors from the untreated control and the group treated with 125I seed alone (p<0.05). CONCLUSION: Robo1 specific CAR-NK immunotherapy enhances efficacy of 125I seed brachytherapy in an orthotopic pancreatic cancer mouse model.


Assuntos
Braquiterapia/métodos , Imunoterapia , Radioisótopos do Iodo/uso terapêutico , Células Matadoras Naturais/imunologia , Proteínas do Tecido Nervoso/imunologia , Neoplasias Pancreáticas/terapia , Receptores de Antígenos/imunologia , Receptores Imunológicos/imunologia , Animais , Apoptose , Proliferação de Células , Citotoxicidade Imunológica/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA