Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Transl Oncol ; 26(6): 1300-1318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244129

RESUMO

In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Hematológicas/terapia , Edição de Genes/métodos , Linfócitos T/imunologia , Linfócitos T/transplante
2.
Clin Transl Oncol ; 25(10): 2793-2800, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37062016

RESUMO

Lymphoma is a hematologic malignancy which mainly consists of Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Although systemic chemotherapy, radiotherapy, and other advanced therapeutics, including rituximab or immune checkpoint inhibitors, have improved the prognosis in recent decades, there are still a number of patients with relapsed or refractory (R/R) lymphoma with a poor prognosis. Chimeric antigen receptor (CAR) T-cell therapy has provided a curative option for patients with relapsed or refractory lymphoma. Numerous clinical trials have been conducted worldwide and presented inspiring results that give insight into this breakthrough therapy. The development of cancer cell therapy in China has been rapid in the past years and dominates the field with the USA. This review aims to summarize the published results of CAR T-cell therapy alone or in combination with other therapies in mainland China, both in R/R NHL and R/R HL.


Assuntos
Doença de Hodgkin , Linfoma não Hodgkin , Linfoma , Humanos , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/terapia , Prognóstico
3.
Hematol Transfus Cell Ther ; 45(2): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36243623

RESUMO

INTRODUCTION: Chimeric antigen receptor T (CAR-T) cell therapy is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) that is a multi-step process involving various stakeholders. Appropriate education on the practical logistics is therefore paramount to ensure treatment success. METHODS: A group of key opinion leaders met to explore the key elements of setting up and running a CAR-T center in Brazil. For each step in the CAR-T cell therapy process, the experts agreed on basic requirements, gave their key recommendations from practical experience, and considered any remaining unanswered questions. RESULTS: This paper presents best-practice recommendations and advice on how to overcome common challenges for each step in the CAR-T cell therapy process, with a focus on the current situation in Brazil. Key themes throughout the process are collaboration within the multidisciplinary team and with the referring physician, along with communication and education for patients and their caregivers. CONCLUSION: We believe that the expert insights presented in this paper, in particular on optimal patient selection and timing of CAR-T cell therapy, will deepen understanding of the CAR-T process and aid implementation of this novel therapy for patients with RRMM in Brazil.

4.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(2): 266-274, Apr.-June 2023. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1448345

RESUMO

ABSTRACT Introduction Chimeric antigen receptor T (CAR-T) cell therapy is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) that is a multi-step process involving various stakeholders. Appropriate education on the practical logistics is therefore paramount to ensure treatment success. Methods A group of key opinion leaders met to explore the key elements of setting up and running a CAR-T center in Brazil. For each step in the CAR-T cell therapy process, the experts agreed on basic requirements, gave their key recommendations from practical experience, and considered any remaining unanswered questions. Results This paper presents best-practice recommendations and advice on how to overcome common challenges for each step in the CAR-T cell therapy process, with a focus on the current situation in Brazil. Key themes throughout the process are collaboration within the multidisciplinary team and with the referring physician, along with communication and education for patients and their caregivers. Conclusion We believe that the expert insights presented in this paper, in particular on optimal patient selection and timing of CAR-T cell therapy, will deepen understanding of the CAR-T process and aid implementation of this novel therapy for patients with RRMM in Brazil.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B , Imunoterapia
5.
Eur J Haematol ; 109(6): 601-618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36018500

RESUMO

Hematological malignancies represent defying clinical conditions, with high levels of morbidity and mortality, particularly considering patients who manifest multiple refractory diseases. Recently, chimeric antigen receptor (CAR)-T cell therapy has emerged as a potential treatment option for relapsed/refractory B cell malignancies, which have motivated the Food and Drug Administration approval of a series of products based on this technique. The objective of this systematic review was to assess the efficacy and safety of CAR-T cell therapy for patients with hematological malignancies. A comprehensive literature search was conducted in the electronic databases (CENTRAL, Embase, LILACS, and MEDLINE), clinical trials register platforms (Clinicaltrials.gov and WHO-ICTRP), and grey literature (OpenGrey). The Cochrane Handbook for Reviews of Interventions was used for developing the review and the PRISMA Statement for manuscript reporting. The protocol was prospectively published in PROSPERO database (CRD42020181047). After the selection process, seven RCTs were included, three of which with available outcome results. The available results are from studies assessing axicabtagene, lisocabtagene, and tisagenlecleucel for patients with B cell lymphoma, and the certainty of evidence ranged from very low to low for survival and progression-related outcome and for safety outcomes. Additionally, four randomized controlled trials comparing CAR-T cell therapy to the standard treatment for various types of relapsed/refractory B cell non-Hodgkin lymphomas and multiple myeloma included in this systematic review still did not have available outcome data. The results of this review may be used to guide clinical practice but evidence concerning the safety and efficacy of CAR-T Cell therapy for hematological malignancies is still immature to recommend its application outside of clinical trials or compassionate use context for advanced and terminal cases. It is expected the results of the referred comparative studies will provide further elements to subsidize the broader application of this immunotherapy.


Assuntos
Neoplasias Hematológicas , Linfoma de Células B , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/etiologia , Linfoma de Células B/terapia , Terapia Baseada em Transplante de Células e Tecidos
6.
Rev. méd. Minas Gerais ; 32: 32210, 2022.
Artigo em Inglês, Português | LILACS | ID: biblio-1425697

RESUMO

As células CAR-T são linfócitos geneticamente modificados para reconhecerem um espectro amplo de antígenos de superfície celulares. Além disso, atacam células tumorais malignas, que expressam esses antígenos, por meio da ativação da coestimulação citoplasmática, secreção de citocinas, citólise de células tumorais e proliferação de células T. O objetivo desse estudo é abordar a imunoterapia com células CAR-T, a fim de explicar seu conceito, processo de fabricação e papel no tratamento de neoplasias hematológicas e tumores sólidos. Foi realizada uma revisão através do portal PubMed, utilizando como descritores: "car-t cell therapy" e "neoplasms", determinados com base nos "Descritores em Ciências da Saúde". Foram obtidos, inicialmente, 10 artigos, os quais foram lidos integralmente para a confecção dessa revisão. Além disso, foram adicionados 3 ensaios clínicos atualizados sobre o tema. Na terapia com células CAR-T, as células T são coletadas do paciente, geneticamente modificadas para incluir receptores de antígeno específicos e, posteriormente, expandidas em laboratórios e transfundidas de volta para o paciente. Assim, esses receptores podem reconhecer células tumorais que expressam um antígeno associado a um tumor. A terapia com células CAR-T é mais conhecida por seu papel no tratamento de malignidades hematológicas de células B, sendo a proteína CD19 o alvo antigênico mais bem estudado até o momento. Entretanto, estudos estão sendo feitos para verificar a eficácia desse tratamento, também, em tumores sólidos. Portanto, apesar de inicialmente ser indicada apenas para um grupo seleto de pessoas, essa terapia tem demonstrado grande potencial para atuar em um espectro maior de pacientes.


The CAR-T cells are lymphocytes genetically modified to recognize a broader spectrum of cell surface antigens. In addition, they attack malignant tumor cells, which express these antigens, by activating cytoplasmic co-stimulation, cytokine secretion, tumor cell cytolysis and T cell proliferation. The aim of this study is to address immunotherapy with CAR-T cells, in order to explain its concept, manufacturing process and role in the treatment of hematological neoplasms and solid tumors. This is a literature review conducted through the PubMed portal, that uses the terms "car-t cell therapy" and "neoplasms" as descriptors, determined based on the DeCS (Descritores em Ciências da Saúde). To prepare this review, initially 10 articles were found and read in full. In addition, 3 updated clinical trials on the subject were added. For CAR-T cell therapy, T cells are collected from the patient, genetically modified to include specific antigen receptors, and later expanded in laboratories and transfused back to the patient. Thus, these receptors can recognize tumor cells that express a tumor-associated antigen. CAR-T cell therapy is best known for its role in the treatment of B cell hematological malignancies, with the CD19 protein being the most studied antigenic target to date. However, studies are being conducted to verify the effectiveness of this treatment, also, in solid tumors. Therefore, despite being formulated only for a selected group of patients, this therapy has great potential to act on a broader spectrum of patients.


Assuntos
Humanos , Imunoterapia Adotiva , Neoplasias Hematológicas , Reprogramação Celular , Terapia Baseada em Transplante de Células e Tecidos , Receptores de Antígenos , Ligante Coestimulador de Linfócitos T Induzíveis , Molécula de Adesão da Célula Epitelial/uso terapêutico , Imunoterapia/métodos , Antígenos/imunologia , Neoplasias
7.
Hematol Transfus Cell Ther ; 43 Suppl 2: S35-S41, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794795

RESUMO

Chimeric antigen receptor T cells (CAR-T), especially against CD19 marker, present in lymphomas and acute B leukemia, enabled a revolution in the treatment of hematologic neoplastic diseases. The manufacture of CAR-T cells requires the adoption of GMP-compatible methods and it demands the collection of mononuclear cells from the patient (or from the donor), generally through the apheresis procedure, T cell selection, activation, transduction and expansion ex vivo, and finally storage, usually cryopreserved, until the moment of their use. An important aspect is the quality control testing of the final product, for example, the characterization of its identity and purity, tests to detect any contamination by microorganisms (bacteria, fungi, and mycoplasma) and its potency. The product thawing and intravenous infusion do not differ much from what is established for the hematopoietic progenitor cell product. After infusion, it is important to check for the presence and concentration of CAR-T cells in the patient's peripheral blood, as well as to monitor their clinical impact, for instance, the occurrence of short-term, such as cytokine release syndrome and neurological complications, and long-term complications, which require patient follow-up for many years.

8.
Hematol Transfus Cell Ther ; 43 Suppl 2: S42-S45, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794796

RESUMO

The adherence to accreditation programs proves the institutions' voluntary effort to pursue the quality and safety of their products and services by meeting internationally accepted standards audited by experts in the field, external to the service. Meeting such standards often exceeds domestic legal requirements. However, service providers are not released from complying with the legal requirements, both local and international, pertinent to the field. Accreditation programs use the precepts of the quality management system to validate and standardize processes, monitor results through quality control, proficiency testing, and indicators, and perform risk management. For cellular therapy services, the assessing agencies available in our field are the AABB/ABHH (American Association of Blood Banks/Brazilian Association of Hematology, Hemotherapy and Cellular Therapy) and FACT-JACIE (Foundation for the Accreditation of Cellular Therapy-Joint Accreditation Committee, ISCT/EBMT). Both agencies require that the accredited organization meets all the standards defined in each program. Applying services also have to establish and comply with a quality management standard that demonstrates procedural interrelationship to ensure product and service quality. This paper aims to concisely outline the essential features of those two accreditation programs, along with a brief overview of the accreditation process under each of them.

9.
Hematol Transfus Cell Ther ; 43 Suppl 2: S64-S67, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794799

RESUMO

There are only two ways for a patient to gain access to treatment with an experimental product, such as CAR-T cells: participate in a clinical trial or receive a product in a compassionate basis. In the first case, the main beneficiary is society itself, which may in turn obtain a new treatment paradigm for a specific disease. In the second case, the use of a medicinal product has the objective of care in benefit of patients in grave clinical condition, for which no approved medicinal products exist, or for which all the possibilities for benefit from standard therapies have been exhausted. The CAR-T cell therapy may be included in one or the other types of access. The compassionate use is not a specific type of clinical research and should therefore not have its use appreciated by a research ethics committee, but rather by the medical ethics committee at the institution where the treatment will take place and by the regulatory agency.

10.
Inflamm Res ; 70(6): 651-663, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018005

RESUMO

OBJECTIVE: CAR-T cell therapy has revolutionized the treatment of oncological diseases, and potential uses in autoimmune diseases have recently been described. The review aims to integrate the available data on treatment with CAR-T cells, emphasizing autoimmune diseases, to determine therapeutic advances and their possible future clinical applicability in autoimmunity. MATERIALS AND METHODS: A search was performed in PubMed with the keywords "Chimeric Antigen Receptor" and "CART cell". The documents of interest were selected, and a critical review of the information was carried out. RESULTS: In the treatment of autoimmune diseases, in preclinical models, three different cellular strategies have been used, which include Chimeric antigen receptor T cells, Chimeric autoantibody receptor T cells, and Chimeric antigen receptor in regulatory T lymphocytes. All three types of therapy have been effective. The potential adverse effects within them, cytokine release syndrome, cellular toxicity and neurotoxicity must always be kept in mind. CONCLUSIONS: Although information in humans is not yet available, preclinical models of CAR-T cells in the treatment of autoimmune diseases show promising results, so that in the future, they may become a useful and effective therapy in the treatment of these pathologies.


Assuntos
Doenças Autoimunes/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos
11.
Cytotherapy ; 23(2): 119-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303326

RESUMO

BACKGROUND AIMS: The genus Cryptococcus comprises two major fungal species that cause clinical infections in humans: Cryptococcus gattii and Cryptococcus neoformans. To establish invasive human disease, inhaled cryptococci must penetrate the lung tissue and reproduce. Each year, about 1 million cases of Cryptococcus infection are reported worldwide, and the infection's mortality rate ranges from 20% to 70%. Many HIV+/AIDS patients are affected by Cryptococcus infections, with 220,000 cases of cryptococcal meningitis reported worldwide in this population every year (C. neoformans infection statistics, via the Centers for Disease Control and Prevention, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/statistics.html). To escape from host immune cell attack, Cryptococcus covers itself in a sugar-based capsule composed primarily of glucuronoxylomannan (GXM). To evade phagocytosis, yeast cells increase to a >45-µm perimeter and become titan, or giant, cells. Cryptococci virulence is directly proportional to the percentage of titan/giant cells present during Cryptococcus infection. To combat cryptococcosis, the authors propose the redirection of CD8+ T cells to target the GXM in the capsule via expression of a GXM-specific chimeric antigen receptor (GXMR-CAR). RESULTS: GXMR-CAR has an anti-GXM single-chain variable fragment followed by an IgG4 stalk in the extracellular domain, a CD28 transmembrane domain and CD28 and CD3-ς signaling domains. After lentiviral transduction of human T cells with the GXMR-CAR construct, flow cytometry demonstrated that 82.4% of the cells expressed GXMR-CAR on their surface. To determine whether the GXMR-CAR+ T cells exhibited GXM-specific recognition, these cells were incubated with GXM for 24 h and examined with the use of brightfield microscopy. Large clusters of proliferating GXMR-CAR+ T cells were observed in GXM-treated cells, whereas no clusters were observed in control cells. Moreover, the interaction of GXM with GXMR-CAR+ T cells was detected via flow cytometry by using a GXM-specific antibody, and the recognition of GXM by GXMR-CAR T cells triggered the secretion of granzyme and interferon gamma (IFN-γ). The ability of GXMR-CAR T cells to bind to the yeast form of C. neoformans was detected by fluorescent microscopy, but no binding was detected in mock-transduced control T cells (NoDNA T cells). Moreover, lung tissue sections were stained with Gomori Methenamine Silver and evaluated by NanoZoomer (Hamamatsu), revealing a significantly lower number of titan cells, with perimeters ranging from 50 to 130 µm and giant cells >130 µm in the CAR T-cell treated group when compared with other groups. Therefore, the authors validated the study's hypothesis by the redirection of GXMR-CAR+ T cells to target GXM, which induces the secretion of cytotoxic granules and IFN-γ that will aid in the control of cryptococcosis CONCLUSIONS: Thus, these findings reveal that GXMR-CAR+ T cells can target C. neoformans. Future studies will be focused on determining the therapeutic efficacy of GXMR-CAR+ T cells in an animal model of cryptococcosis.


Assuntos
Cryptococcus neoformans , Polissacarídeos , Receptores de Antígenos Quiméricos , Animais , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
12.
Hematol Transfus Cell Ther, v. 43, suppl 2, p. S35-S41 nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4000

RESUMO

Chimeric antigen receptor T cells (CAR-T), especially against CD19 marker, present in lymphomas and acute B leukemia, enabled a revolution in the treatment of hematologic neoplastic diseases. The manufacture of CAR-T cells requires the adoption of GMP-compatible methods and it demands the collection of mononuclear cells from the patient (or from the donor), generally through the apheresis procedure, T cell selection, activation, transduction and expansion ex vivo, and finally storage, usually cryopreserved, until the moment of their use. An important aspect is the quality control testing of the final product, for example, the characterization of its identity and purity, tests to detect any contamination by microorganisms (bacteria, fungi, and mycoplasma) and its potency. The product thawing and intravenous infusion do not differ much from what is established for the hematopoietic progenitor cell product. After infusion, it is important to check for the presence and concentration of CAR-T cells in the patient's peripheral blood, as well as to monitor their clinical impact, for instance, the occurrence of short-term, such as cytokine release syndrome and neurological complications, and long-term complications, which require patient follow-up for many years.

13.
Hematol Transfus Cell Ther, v. 43, suppl 2, p. S42-S45, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3999

RESUMO

The adherence to accreditation programs proves the institutions' voluntary effort to pursue the quality and safety of their products and services by meeting internationally accepted standards audited by experts in the field, external to the service. Meeting such standards often exceeds domestic legal requirements. However, service providers are not released from complying with the legal requirements, both local and international, pertinent to the field. Accreditation programs use the precepts of the quality management system to validate and standardize processes, monitor results through quality control, proficiency testing, and indicators, and perform risk management. For cellular therapy services, the assessing agencies available in our field are the AABB/ABHH (American Association of Blood Banks/Brazilian Association of Hematology, Hemotherapy and Cellular Therapy) and FACT-JACIE (Foundation for the Accreditation of Cellular Therapy-Joint Accreditation Committee, ISCT/EBMT). Both agencies require that the accredited organization meets all the standards defined in each program. Applying services also have to establish and comply with a quality management standard that demonstrates procedural interrelationship to ensure product and service quality. This paper aims to concisely outline the essential features of those two accreditation programs, along with a brief overview of the accreditation process under each of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA