Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 29(2): 314-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646155

RESUMO

Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.


Assuntos
Amônia/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Animais , Carbenoxolona/farmacologia , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
J Neurochem ; 130(1): 61-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24673378

RESUMO

Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and shows neuroprotective effects in several in vivo and in vitro studies. Our group recently showed that guanosine presents antioxidant properties in C6 astroglial cells. The heme oxygenase 1 signaling pathway is associated with protection against oxidative stress. Azide, an inhibitor of the respiratory chain, is frequently used in experimental models to induce oxidative and nitrosative stress. Thus, the goal of this study was to investigate the effect of guanosine on azide-induced oxidative damage in C6 astroglial cells. Azide treatment of these cells resulted in several detrimental effects, including induction of cytotoxicity and mitochondrial dysfunction, increased levels of reactive oxygen/nitrogen species, inducible nitric oxide synthase expression and NADPH oxidase, decreased glutamate uptake and EAAC1 glutamate transporter expression, decreased glutathione (GSH) levels, and decreased activities of glutamine synthetase (GS), superoxide dismutase and catalase (CAT). The treatment also increased nuclear factor-κB activation and the release of proinflammatory cytokines tumor necrosis factor α and IL-1ß. Guanosine strongly prevented these effects, protecting glial cells against azide-induced cytotoxicity and modulating glial, oxidative and inflammatory responses through the activation of the heme oxygenase 1 pathway. These observations reinforce and support the role of guanosine as an antioxidant molecule against oxidative damage. Guanosine protects against azide-induced oxidative damage in C6 astroglial cells. Azide-induced mitochondrial dysfunction (1); increased reactive oxygen species/reactive nitrogen species levels (2); decreased glutamate uptake (3), GS activity (4), GSH levels (5), and SOD (6) and CAT (7) activities; increased glutathione peroxidase (GPx) (8) and NADPH oxidase (9) activities and cellular superoxide levels (10); increased NF-κB activation (11), TNF-α and IL-1ß levels (12); and induced iNOS expression (13). Guanosine prevented these effects through the HO1 signaling pathway, thus our findings support the antioxidant effects of guanosine.


Assuntos
Astrócitos/enzimologia , Azidas/toxicidade , Guanosina/farmacologia , Heme Oxigenase (Desciclizante)/fisiologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular , Células Cultivadas , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Toxicol In Vitro ; 27(7): 2041-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23880158

RESUMO

Astrocytes play an essential role in the central nervous system (CNS) homeostasis. They providing metabolic support and protecting against oxidative stress and glutamatergic excitotoxicity. Glutamate uptake, an electrogenic function, is driven by cation gradients and the Na⁺-K⁺-Cl⁻ co-transporter (NKCC1) carries these ions into and out of the cell. Elevated concentrations of ammonia in the brain lead to cerebral dysfunction. Ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and ion discharged. Astrocytes also convert excess ammonia and glutamate into glutamine, via glutamine synthetase (GS). Lipoic acid (LA) is a modulator of the cellular redox status potentially beneficial in neurodegenerative diseases. In this study, we investigated the effect of LA on glial parameters, in C6 cells exposed to ammonia. Ammonia increased S100B secretion and decreased glutamate uptake, GS activity and glutathione (GSH) content. LA was able to prevent these effects. LA exerts its protective effect on glutamate uptake and S100B secretion via mechanisms dependent of NKCC1 and PKC. These findings show that LA is able to modulate glial function impairments by ammonia in vitro, indicating a potential therapeutic agent to improve glutamatergic metabolism and oxidative stress against hyperammonemia.


Assuntos
Astrócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Ácido Tióctico/farmacologia , Amônia/antagonistas & inibidores , Amônia/toxicidade , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/toxicidade , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/agonistas , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/agonistas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/agonistas , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/agonistas , Membro 2 da Família 12 de Carreador de Soluto/química , Ácido Tióctico/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA